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I. Introduction

One of the most intuitive predictions of deterrence theory is that, all else equal, an increase in the probability

of apprehension decreases participation in crime. This prediction is a core part of Becker’s (1968) account

of deterrence theory and is also present in the historical articulations of the theory given in Beccaria (1764)

and Bentham (1789). The prediction is no less important in more recent treatments, such as the models

discussed in Lochner (2004), Burdett, Lagos and Wright (2004), and Lee and McCrary (2009), among others.1

On the empirical side, the literature has focused on the specific question of the relationship between police

prevalence and crime, where police are viewed as a primary factor influencing the probability of apprehension

facing a potential offender. The empirical literature addressing the effect of police on crime encompasses

hundreds of articles, and indeed, the literature is sufficiently large that there are many prominent review

articles, including Nagin (1978), Cameron (1988), Nagin (1998), Eck and Maguire (2000), Skogan and Frydl

(2004), and Levitt and Miles (2006), among others.2

Early empirical papers such as Ehrlich (1972) and Wilson and Boland (1978) focused on the cross-sectional

association between police and crime. Concern over the potential endogeneity of policing levels, however, led to

a predominance of papers using panel data techniques (Cornwell and Trumbull 1994, Marvell and Moody 1996,

Witt, Clarke and Fielding 1999, Fajnzylber, Lederman and Loayza 2002, Baltagi 2006) and, more recently,

quasi-experimental techniques such as instrumental variables and differences-in-differences (Levitt 1997, Di Tella

and Schargrodsky 2004, Klick and Tabarrok 2005, Evans and Owens 2007, Machin and Marie 2011).

In the U.S. context, the typical panel data approach uses information on cities over time and regresses

log crime on the log of the number of sworn police as well as additional control variables.3 Common control

variables include city effects, year effects, and measures of the age structure in the population. Frequently,

city effects are not estimated using fixed effects, but rather are eliminated by taking first differences, so that

the core approach is regressing year-over-year growth rates in crime on year-over-year growth rates in the

number of sworn police. Generally speaking, elasticity estimates based on these panel data approaches tend

to be persistently negative, but small (e.g., -0.05 to -0.15), at least for large U.S. cities in recent decades.

These findings have convinced many researchers that cities hire police officers during, or perhaps even in

anticipation of, crime waves, leading even growth rate regressions to be subject to simultaneity bias (Marvell

and Moody 1996, Levitt 1997, Di Tella and Schargrodsky 2004, Klick and Tabarrok 2005). These papers have

1Polinsky and Shavell (2000) provide a review of the theoretical deterrence literature that emerged since Becker (1968), with
a particular focus on the normative implications of the theory for the organization of law enforcement strategies.

2The most recent survey, Lim, Lee and Cuvelier (2010), reviews 258 papers.
3Unlike civilian employees, sworn police officers carry a badge and a gun and have the power of arrest.
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estimated the police elasticity using a variety of quasi-experimental approaches. In the main, the results from

this literature are larger in magnitude than those from the panel data regression papers, which is consistent

with the interpretation that cities hire police officers during or before crime waves.

Another explanation for the small magnitude of the police elasticity estimates based on least squares,

relative to those from the quasi-experimental literature, is that the number of police is measured with error. As

is well-known, measurement error in a covariate leads to bias on the coefficient on that covariate and possibly

others as well (Griliches 1977, Ashenfelter and Krueger 1994, Ashenfelter and Rouse 1998, Wooldridge 2002).

At first blush, it seems implausible that the number of police would be measured with error. Indeed, as we

show, the number of police is measured well, if the metric is the bias exerted on the police coefficient in a

crime regression in levels or logs with few covariates. However, the appropriate metric changes if the crime

regression of interest involves many covariates, or transformations of the data such as first differences. In

such contexts, as we show, the errors in measurement in the number of police are of sufficient magnitude

as to exert a first-order influence on the measured elasticity of crime with respect to police.

In this paper, we present estimates of the elasticity of crime with respect to police that correct for measurement

error. Our results are based on a large new panel data set on crime and policing pertaining to 242 large U.S. cities

over the period 1960-2010. For each city and each year, we utilize two measures of the number of police: one

based on the standard data set on police staffing collected by the Federal Bureau of Investigation (FBI) as part

of its Uniform Crime Reports (UCR) program and the other based on a rarely used data set on police staffing

collected by the Census Bureau as part of its Annual Survey of Government (ASG) program. The crux of our

approach is to use one noisy measure of police staffing as an instrument for another noisy measure. Under the

classical measurement error model, such instrumental variables estimates have the same probability limit as that

of least squares, were the true measure of police available. If, as has been emphasized in the previous literature,

simultaneity bias is an important additional source of bias, then the true elasticity of crime with respect to police

is likely at least as large as that probability limit. Hence, our analysis may be viewed as conservative. This is

an important conclusion from a normative perspective, as we document quite large police elasticities of crime.

We begin the paper with a discussion of some evidence on the extent of measurement error. We then turn to

a discussion of the data, outline our methodology, and report our estimated elasticities. Before concluding, we

offer suggestive calculations regarding the magnitude of the deterrence effect of police versus the incapacitation

effect of police (McCrary 2009, Section 4).
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II. Evidence on the Extent of Measurement Error

A. Direct Evidence

In the 2003 version of Crime in the United States, the Federal Bureau of Investigation reports that the New

York Police Department employed 28,614 sworn police officers on October 31, 2003. Relative to the 37,240

sworn officers employed in 2002 and the 35,513 officers employed in 2004, this is a remarkably low number.

If these numbers are to be believed, then the ranks of sworn officers in New York City fell by one-quarter

in 2003, only to return to near full strength in 2004.

An alternative interpretion is that the 2003 number is a mistake. Panel A of Figure 1 compares the time

series of sworn officers of the New York Police Department based on the UCR reports with that based on

administrative data from 1990-2009.4 These data confirm that the 2003 measure is in error and additionally

suggest that the 1999 measure may be in error. These discrepancies may also support a more speculative

inference that the numbers for 1963 and 1974 are in error.5

Administrative data on the number of officers is difficult to obtain. More readily available are departmental

annual reports. However, even these are not easy to obtain; annual reports are largely internal municipal

documents and historically did not circulate widely.6 Moreover, the annual report may or may not report

the number of officers employed by the police department.

Nonetheless, we have been able to obtain scattered observations on the number of sworn officers from annual

reports for selected other cities in selected years: Los Angeles, Chicago, Boston, and Lincoln, Nebraska. The

numbers for Chicago have been further augmented by the strength report data reported in Siskin and Griffin

(2007).7 The time series of sworn officers for these cities is given in Figure 1 in panels B through E. The

figure shows that the UCR data for Los Angeles are in close correspondence with the annual report data

and that the UCR data for Chicago, Boston, and Lincoln are more accurate than those for New York, but

less accurate than those for Los Angeles.

Table 1 summarizes these findings. Columns correspond to the five cities and rows correspond to whether the

number of officers are measured in logs or in log differences. The table highlights that, treating the administrative

and annual report data as the true measure, (1) there is a broad range of fidelity in reporting to the UCR program,

with Los Angeles being the most faithful, New York the least, and the others somewhere between those two book-

4See Data Appendix for details on these data. Special thanks to Frank Zimring for pointing us towards public domain
information on New York police staffing based on his work on the New York City crime drop (Zimring 2011).

5We have discussed this aberrant measurement with other scholars of crime and police, both in economics and in criminology,
and have neither thought nor heard of a fully plausible explanation for the source of the measurement aside from simple error.

6In recent years, many departments have begun a practice of posting annual reports online, but only a few cities have
endeavored to post historical annual reports.

7See Data Appendix for details on the annual report and strength report data.
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ends, and (2) after taking first differences, the correlation between the UCR data and the alternative measure

falls by anywhere from an estimated 8 percent (Los Angeles) to 51 percent (New York). As noted in the introduc-

tion this is important, because much of the literature uses first-differenced data. Consequently, the much smaller

correlations in the second row of the table are the relevant ones for gauging the magnitude of measurement error.

It may be surprising that there is ambiguity regarding the number of sworn officers. Errors in the measure

of the number of sworn officers could arise due to (1) transitory movements within the year in the number

of police, (2) conceptual confusion, and (3) typographical or data entry errors.

Figure 2 gives information on transitory movements in police staffing for Chicago for the period 1979-1997.

The figure displays the monthly count of the number of sworn officers, with the count for October superimposed

as horizontal lines.8 There is evidently a great deal of within-year volatility in the number of sworn officers.

Overall, the series is characterized by hiring bursts followed by the gradual decline associated with losses due

to retention or retirement. Transitory movements in police officers is relevant because surveys typically ask

for a point-in-time measure, and the snapshot date differs across surveys. The UCR reports a point-in-time

measure as of October 31. The ASG reports a point-in-time measure as of November 1 for 1960-1995 and as

of June 30 for 1997-2010.9 Among those we have been able to examine, internal police department documents

use different reporting conventions, typically corresponding to the end of the municipal fiscal year, which

varies across municipalities and over time. Perhaps responding to the ambiguities of point-in-time measures,

the New York City Police Department uses average daily strength in internal documents.

In addition to transitory movements, there may also be conceptual ambiguity over who counts as a sworn

police officer. First, there may be confusion between the number of total employees, which includes civilians,

and the number of sworn officers. Second, newly hired sworn officers typically attend Police Academy at

reduced pay for roughly 6 months prior to swearing in, and there may be ambiguity regarding whether those

students count as sworn officers prior to graduation. Third, there is often a discrepancy between authorized

and deployed strength.10 For our main sample of cities, we have measures of the number of authorized and

deployed sworn officers for selected recent years from the Law Enforcement Management and Administrative

Statistics (LEMAS). These data show that the number of deployed sworn officers ranges from 62 to 128

percent of authorized strength.11

8We are not aware of any public-use data sets containing information on within-year fluctuations in police staffing. During
the period 1979-1997, a unique non-public dataset on sworn officers in Chicago is available to the authors, however, that allows
the construction of monthly counts. These data are discussed in Siskin and Griffin (2007) and were previously used in McCrary
(2007). See Data Appendix for details.

9No annual ASG survey was conducted in 1996.
10Authorized strength refers to the number of officers the department has authority from the city government to employ,

whereas deployed strength refers to the actual number of employees.
11Numbers refer to a pooled analysis of data from 1987, 1990, 1993, 1997, 1999, 2000, and 2003. Population weighted mean
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Finally, the measurement of sworn police in the UCR system seems to be subject to errors that are

inconsistent with transitory movements within the year in the number of sworn police officers and inconsistent

with conceptual confusion. For such errors, we have no other explanation than typographical or data entry

error. However, categorizing errors in this way is not meaningfully different from acknowledging that some

errors, such as those for New York in 2003 for example, have no easy explanation.

B . Comparison of Two Noisy Measures

Police department internal documents are presumably more accurate than the information police departments

report to the UCR program. However, as discussed, these are only available in selected cities and selected

years. Trading off accuracy for coverage, we now present a comparison of the UCR series on the number of

sworn officers with a series based on the ASG. We use the ASG data to construct an annual series on full-time

sworn officers for all the cities in our main analysis sample. We define this sample and give background on

the ASG data in Section III, below.

Figure 3 provides visual evidence of the statistical association between the UCR and ASG series for sworn

officers, measured in logs (panel A) and first differences of logs, or growth rates (panel B). In panel A, we observe

a nearly perfect linear relationship between the two measures, with the majority of the data points massed around

the 45◦ line. The regression line relating the log UCR measure to the log ASG measure is nearly on top of the 45◦

line, with a slope of 0.99. Panel B makes it clear that differencing the data substantially reduces the statistical

association between the UCR and ASG series; the slope coefficient for the log differenced data is just 0.21.

To appreciate the implications of these findings for quantification of the police elasticity of crime, we

provisionally turn to a classical measurement error model. This model posits that the two observed series

on police are related to a single latent measure as

Si = S∗i + ui (1)

Zi = S∗i + vi (2)

Here, Si is the UCR measure in a given city and year, Zi is the ASG measure, S∗i is the latent variable or

signal, and ui and vi are mean zero measurement errors that are mutually independent, independent of the

signal, and independent of other measurable factors as well.12

and standard deviation are 97 percent and 5 percent, respectively. The LEMAS data also allow us to discount the possibility
that there is error due to ambiguities among sworn officers, full-time sworn officers, or full-time-equivalent sworn officers, as
only 1 to 2 percent of officers appear to work part-time.

12For example, the classical measurement error model typically combines these equations with an equation pertaining to
an outcome that depends on S∗i . Then the additional maintained assumption is that the measurement errors ui and vi are
independent of the structural error term associated with the outcome equation.
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This simple statistical model implies that the covariance between the UCR and ASG is given by the

variance of the signal and that the population regression of the UCR measure on the ASG measure yields

a coefficient on the ASG measure of r = V [S∗i ]
/

(V [S∗i ] + V [vi]), a quantity known as the reliability ratio.

Under this model, we interpret the slope coefficient of 0.99 in panel A to mean that the variance of the noise

is approximately 1 percent as large as the variance of the signal.13 In panel B, the data are measured in

first differences. In that context, the slope is 0.21, indicating that the variance of the noise is 3.8 times as

large as the variance of the signal. That first-differencing the data dramatically reduces the reliability ratio

has been well-understood since at least Griliches (1977). Intuitively, first-differencing removes variance from

the signal, but increases the variance in the measurement errors.

A standard result in econometrics, noted in Wooldridge (2002, p. 75) for example, is that under the classical

measurement error model the probability limit of the slope coefficient in a bivariate regression of one variable

on the other, where the other variable has a reliability ratio of r, is the target parameter times r. This is

referred to as “attenuation bias” because while the estimand retains the correct sign, the magnitude of the

estimand is attenuated, or biased towards zero. Consequently, since r = 0.21 for the data in growth rates,

the classical measurement error model suggests inflating the slope coefficient in a regression of growth rates

in crime on growth rates in police by 4.76.

When further control variables are added, all of which are measured without error, then the relevant

reliability ratio becomes r = V [ξi]
/

(V [ξi] + V [vi]), where ξi is the error term in the population regression of S∗i

on all of the control variables in the model (cf., Angrist and Krueger 1999, for example). Since V [ξi] ≤ V [S∗i ],

we conclude that once control variables are added to the model, it may be appropriate to inflate regression

estimates by a factor larger than 5. When further control are added, not all of which are measured without error,

measurement error bias no longer has the attenuation bias form. We return to this issue in Section IV, below.

III. Data

Virtually all empirical studies of the effect of police on crime use data from the UCR, collected annually by

the FBI. Crime measures represent the total number of offenses known to police to have occurred during

the calendar year and are part of the “Return A” collection.14 Sworn police are included in both the Law

Enforcement Officers Killed or Assaulted (LEOKA) collection and the Police Employees (PE) collection and

represent a snapshot as of October 31st of the given year. Because of the late date of the measurement of

the number of police, it is typical to measure police in year t using the LEOKA file from year t− 1 (cf., Levitt

13That is, upon rearrangement, V [vi]/V [S∗i ] = (1 − r)/r.
14Time series for each of the crime rates utilized for each of our cities are shown in Appendix Figure 1.
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1997), and we follow that convention here. Consequently, although we have data on levels from 1960-2010,

our regression analyses of growth rates pertain to 1962-2010.

As noted above, we augment data from the UCR with data from the Annual Survey of Government (ASG)

Employment, an annual survey of municipal payrolls that has been administered by the Bureau of Labor

Statistics and reported to the U.S. Census annually since 1952. The ASG data provide payroll data for a

large number of municipal functions including elementary and secondary education, judicial functions, public

health and hospitals, streets and highways, sewerage and police and fire protection among others. The survey

generally provides information on the number of full-time, part-time and full-time equivalent sworn and

civilian employees for each function and for each municipal government.15

Our sample of 242 cities includes nearly all cities with a population exceeding 50,000 individuals for each year

during our 1960-2010 study period.16 Information on police staffing is available in both the UCR data and ASG

data for each of these cities for the entire study period.17 The LEOKA data provide the number of full-time sworn

police officers and the total number of police officers in each year. The ASG data provide the same information

beginning in 1977. Prior to 1977, the ASG series reports only the number of full-time equivalent police personnel,

without differentiating between sworn officers and civilian employees. In order to extend the series, we generate

a city- and year-specific estimate of the proportion of police personnel who are sworn officers using the LEOKA

data. This was accomplished by regressing the proportion of police personnel who are sworn on an exhaustive set

of city and year dummies using the 1960-1977 sample and generating a predicted value for the sworn percentage

in each city-year. The predicted values were then multiplied by full-time equivalent officers from the ASG series

prior to 1977 to generate a predicted number of sworn FTE officers. Next, in order to generate an estimate

of the number of full-time sworn officers, a city-specific estimate of the average ratio of full-time equivalent

officers to full-time officers was generated using the ASG data from 1977-2010.18 Multiplying this ratio by

the number of sworn FTEs yields an estimated number of sworn full-time officers for each city prior to 1977.19

In addition to these data we have collected historical information on several important covariates. One

such control variable is city revenues. We were particularly concerned with collecting this series because of

a particular causal channel which might lead regression-based estimates of the effect of police on crime to

15Full-time equivalent employees represent the number of full-time employees who could have been employed if the hours worked by
part-time employees had instead been dedicated exclusively to full-time employees. The statistic is calculated by dividing the number
of part-time hours by the standard number of full-time hours and then adding this number to the number of full-time employees.

16Excluded from the sample are approximately 30 cities for which more than seven years of data were missing for one or
more key variables.

17We fill in missing observations using linear interpolation. For example, the ASG was not administered in 1996 and is taken
as the average of the 1995 and 1997 levels.

18This ratio ranges from a low of 83% to a high of 100%, with a mean of 99.8%.
19Time series of the number of full-time sworn officers according to the LEOKA and ASG measures for each city are provided

in Appendix Figure 2.
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be negatively biased. According to this story, cities lay off police officers when the budget is tight, which

coincides with a period of a weak local economy and a possible labor market link to crime. These data are

from the Annual Survey of Government Finance.20

Another obvious control variable is the overall population. The population measure utilized in the majority

of crime research is drawn from the FBI’s Return A file. While this series contains valid observations for nearly

all city-years, it is potentially contaminated by measurement error, particularly in the years immediately prior

to the decennial Census. Accordingly, we also utilize a measure of each city’s population that is contained in the

annual ASG files. The ASG population measure is likewise noisy and is also often not smooth across Census year

thresholds. As a result, measures of police and crime that are deflated by either of the two population measures

are also not smooth across these thresholds even when the raw numbers officers and crimes are. In order to

smooth the series, we generated a moving average population measure using the predictions from local linear

regression with a bandwidth of 5 and the triangle kernel (Fan and Gijbels 1996).21 These population imputations,

as well as the raw data underneath them, are shown for each city in the sample in Appendix Figure 3.

We provide further evidence for the necessity of smoothing the raw population in Figures 6A and 6B. These

figures present scatterplots of the growth rate in violent and property crimes against the growth rate in the

the raw and smoothed population measures from both the LEOKA and the ASG file. Referring to Panel

A of Figure 6A, we see that a one percent increase in the population growth rate is associated with a 0.25

percent increase in the number of violent and property crimes. This is suprising as, while the crime-population

elasticity need not equal 1, on average, population and crime should closely track one another. Panel B plots

the number of crimes against the smoothed LEOKA population measure. Here, the regression slopes are

0.94 and 0.84, respectively, neither of which is statistically significantly different from 1. Figure 6B reports

similar results for the ASG population measure. We interpret these findings as evidence that the smoothed

population measures paint a more accurate picture of changes in city population.

We additionally consider population disaggregated by age, sex, and race/ethnicity. These data, collected

by the Census Bureau as part of its Population Estimates program, are only available starting in 1970.

We turn now to Table 2, which provides summary statistics for each of our two primary police measures

as well as each of the seven so-called index offenses—murder, rape, robbery, aggravated assault, burglary,

larceny exclusive of motor vehicle theft (“larceny”), and motor vehicle theft. We additionally report summary

statistics for the aggregated crime categories of violent and property crime. The left-hand panel of Table

2 gives statistics for the levels of crime and police in per capita terms, specifically as a measure of the value

20See Data Appendix for details on these data.
21We describe the procedure we employ in greater detail in the Data Appendix to this paper.
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per 100,000 population. The right-hand panel gives statistics for log differences of crime and police.

Several features of the data are worth noting. First, a typical city employs approximately 250 police officers

per 100,000 population, one officer for every 4 violent crimes, and one officer for every 24 property crimes.

There is considerable heterogeneity in this measure over time, with the vast majority of cities hiring additional

police personnel over the study period. However, there is even greater heterogeneity accross cities, with between

city variation accounting for nearly 90% of the overall variation in the measure. The pattern is somewhat

different for the crime data, with a roughly equal proportion of the variation arising between and within cities.

Second, it is worth pointing out that the vast majority (87%) of crimes are property crimes with the most

violent crimes (murder and rape) comprising less than 1% of all crimes reported to police. It is likewise

important to note that each of the crime aggregates is dominated by a particular crime type with assault

comprising nearly half of all violent crimes and larceny comprising 59% of all property crimes.

Third, and turning to the growth rates, perhaps the most relevant feature of the data is that taking first

differences of the series comes close to eliminating time invariant cross-sectional heterogeneity in log crime and

log police. For each measure of crime and police, the within standard deviation in growth rates is essentially

equal to the overall standard deviation. Moreover, in results not shown, taking first differences of a per capita

measure fully eliminates cross-sectional heterogeneity.

Figure 4 highlights long-run trends in crime and police. Panels A, B, and C present the time series for total

violent crime, total property crime, and total sworn officers for our sample of 242 cities, 1960-2010. The series

show a remarkable 30 year rise in criminality from 1960 to 1990, followed by an equally remarkable 20 year

decline in criminality from 1990 to 2010. These swings are spectacular in magnitude. Violent crimes are below

200,000 in 1960, rise to well over 800,000 by 1990, and then decline to just below 500,000 by 2010. Property

crimes are below 1.5 million in 1960, rise to 4.5 million by 1990, and then decline to below 3 million by 2010.

The series for sworn police shows quite different secular trends. The 1960s is a decade of strong gains, from

110,000 officers to 150,000 officers, with acceleration evident after the wave of riots 1965-1968, followed by

a slower rate of increase during the first half of the 1970s. During the second half of the 1970s, we see an

era of retrenchment, perhaps related to urban fiscal problems. From 1980 to 2000, sworn police generally

increase, with particularly strong increases in the 1990s. Since 2000 the numbers are roughly flat, with the

exception of 2003, which is driven entirely by the erroneous estimate provided by the New York City Police

Department to the UCR program (cf., Figure 1).

Throughout our analysis, we focus on year-over-year growth rates in crime and police and further absorb the

secular trends by including year effects as covariates. Interestingly, this is also the performance metric used by
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most police departments, at least based on the annual reports we have been able to examine. That is, they discuss

year-over-year growth rates and compare their numbers to year-over-year growth rates in national averages.

Our focus on this transformation implies that the source of identifying information in our estimation strategies

is related to the temporal changes in the standard deviation of year-over-year growth rates. The bottom part of

panels A, B, and C show these standard deviations and how they have evolved over time. The figure shows that

there has been some slight decline in the standard deviation of the growth rate of sworn police over time. An inter-

esting pattern is the strong spike in the standard deviation of the crime growth rates around 1990. This pattern

is attributable to differences across cities in the date of the peak of crime. Around 1990, some cities are still expe-

riencing the wave of violence related to the crack epidemic, while other cities are already seeing the beginnings of

the crime decline. Generally speaking, however, all time periods seem equally likely on an a priori basis to be in-

formative regarding the effect of police on crime and so we focus on estimates that are based on all available years.

IV. Econometric Approach

Our first equation of interest is

Yi = θ0S
∗
i + γ′0Xi + εi (3)

where Yi is the first difference of log crime in a given city and year, S∗i is the first difference of the log

of the true number of police, and Xi is a vector of control variables such as log revenues per capita, log

population, the demographic structure of the population, all measured in first differences, as well as year

effects or state-by-year effects. We interpret the parameter θ0 as what might be termed the short-term police

elasticity of crime. We do not address in this paper the interesting question of whether a short-term innovation

to the level of police in a city has a smaller or larger effect than a long-term innovation to the level of police.

We can combine this equation with the measurement error model given in equations (1) and (2) by

substituting equation (1) into equation (3) and by linearly projecting Si onto Zi and Xi. This yields

Yi = θ0Si + γ′0Xi + εi (4)

Si = π01Zi + π′02Xi + νi (5)

where εi = εi − θ0ui and νi is a linear projection error. This is then a standard simultaneous equations model

where Zi is potentially an instrument for Si. Estimation proceeds straightforwardly by IV since the model is

just-identified, and 2010 city population is used as a weight to obtain a police elasticity estimate representative

of the typical person living in our sample of cities. We next articulate the precise assumptions that justify
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the exclusion of Zi from equation (4). We assume that

(A1) (ui, vi) ⊥⊥ εi
(A2) (ui, vi) ⊥⊥ (S∗i , Xi)
(A3) ui ⊥⊥ vi
(A4) εi ⊥⊥ (S∗i , Xi)

where ui and vi are the measurement errors from equations (1) and (2).

Assumptions (A1) through (A3) assert that the measurement error in the ASG measure of police is

independent of the structural error term in equation (3), the true growth rate in police, and of the measurement

error in the UCR measure. We discuss empirical implications of assumptions (A1) through (A3) below.

Assumption (A4) is innocent if we maintain that we would be interested in running a regression of crime growth

rates on police growth rates and controls Xi, were police growth rates observed without error. On the other

hand, (A4) may reasonably be called into question. In particular, we present evidence below that city population

growth rates are measured with error. City population growth is a sufficiently important confounder that we feel

the (infeasible) regression model implied by equation (3) and assumption (A4) would not be of interest unless Xi

included it.22 We discuss the challenges of mismeasurement of city population growth in greater detail below.

Most of the previous empirical papers utilizing instrumental variables strategies to address measurement

error have focused on the estimated return to education among samples of twins (see Card (1999) for a review

of this literature). The set of econometric issues raised in those papers is slightly different than in our context.

In particular, in those papers, surveyed twins are asked about their own schooling and that of their twin.

Within each twin pair, individuals are selected at random to be “twin 1” and “twin 2”, and twin 2’s report

of the twin schooling difference is used as an instrument for twin 1’s report of the difference. Even in the

event that classical measurement error were violated, the IV estimates in those papers are expected to be

statistically and economically indistinguishable from IV estimates that instead used twin 1’s report as an

instrument for twin 2’s report. This follows from the simple fact that twin number is randomly assigned.

In our context, however, the different measures arise from substantively different measurement processes.

In the absence of classical measurement error, we would expect to get different results when using the UCR

measure as an instrument for the ASG measure than when using the ASG measure as an instrument for the

UCR measure. For example, one could imagine that since the UCR data have been the basis for most of

the papers in the literature, specification searching might have led to a correlation between ui and εi. Since no

previous paper has utilized the ASG series, specification searching would not have led to a similar correlation

between vi (the ASG error) and εi. A variety of alternative violations of classical measurement error would

22In times of population growth, police force size and crime both grow mechanically. This leads to a positive bias in the
estimated police elasticity for specifications that omit population growth.
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lead to differences between “forward” (ASG as an instrument for UCR) and “reflected” (UCR as an instrument

for ASG) IV estimates. In particular, note that under classical measurement error, the same steps we used

to motivate the simultaneous equations model in equations (4) and (5) can be used to motivate a second

simultaneous model with the roles of Si and Zi reversed and identical parameters in equation (4).

This raises the possibility of an omnibus test of the classical measurement error model, testing the equality

of the “forward” and “reflected” IV estimands. To implement this test, and to present more efficient estimates

of the police elasticity, we consider generalized method of moments (GMM) estimates using moments

gi(β) = Wi


Zi(Yi − θ1Si − γ′1Xi)
Xi(Yi − θ1Si − γ′1Xi)
Si(Yi − θ2Zi − γ′2Xi)
Xi(Yi − θ2Zi − γ′2Xi)

 (6)

where Wi is 2010 city population in levels and all other variables are as defined before. When the parameters

θ1 and θ2 and γ1 and γ2 are allowed to differ, estimating those same parameters by GMM is equivalent to

estimating them separately by IV and correcting the standard errors for the common dependent variable.

Once we impose the restrictions θ1 = θ2 and possibly γ1 = γ2, however, GMM estimates implicitly average

the unrestricted IV estimates, leading to efficiency gains. The omnibus test of the classical measurement

error model is then available as the standard GMM test of overidentifying restrictions.

The system of moments in equation (6) has 2(K + 1) moments and, with the fully restricted model with

θ1 = θ2 and γ1 = γ2, has K + 1 parameters, where Xi has K elements. Since the degree of overidentification

is somewhat large, there is value in exploring empirical likelihood (EL) estimates of the police elasticity and

associated overidentifying tests (Imbens 1993, Qin and Lawless 1994, Imbens 2002).

Above, we noted that our context differs from that of the twins literature in that the sources of our

two measures have the well-defined labels “UCR” and “ASG” which may convey information about the

measurement errors themselves. In the twins context, the sources of the two measures have the labels “twin

1” and “twin 2”, which have no substantive content, since they were randomly assigned. One interesting

implication of this simple fact, as discussed, is that we have available an omnibus test of the classical

measurement error model, namely a test of the equality of the “forward” and “reverse” IV estimands. A

second interesting implication is that more focused tests of aspects of the classical measurement error model

are available as well. For example, under the model in equations (1) and (2), the difference Si − Zi represents

the measurement error difference ui− vi. Under assumptions (A1) and (A2), this quantity should be unrelated

to crime growth rates, which is a testable implication. Moreover, assumption (A3) is testable with a third

measure of police, which we have for selected years from the LEMAS survey. For those years, (A3) implies
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that Si − Zi should be unrelated to the LEMAS measure, which is again testable. Similarly, letting Z̃i denote

the LEMAS measure, the difference Si − Z̃i should be unrelated to Zi and Zi − Z̃i should be unrelated to

Si. Anticipating what is to come, there is little evidence in our data against these stochastic restrictions.

As noted, a challenge we face in implementing the above ideas is that both police and population growth

rates may be measured with error. As is well-known, measurement error bias has the form of attenuation

bias only if a single covariate is measured with error (cf., Angrist and Krueger 1999). In our context, the

important elements of Xi are fixed effects, which are innocent, and city population growth, which may be

problematic. We next discuss our approach to addressing the measurement error in population.

There is no consensus choice of reliable information on city population annually. Both the UCR and ASG

data systems ask cities for information on population, and as noted the UCR measure is used throughout

the crime literature. However, the accuracy of these measures is not obvious, and they often disagree. A

potential solution to the measurement problems with city population growth is to again use the UCR measure

as an instrument for the ASG measure.

This brings us to our second equation of interest,

Yi = θ0S
∗
i + φ0P

∗
i + γ′0Xi + εi (7)

where now Xi is redefined to include only fixed effects. First differenced log population, measured without

error, is now written explicitly as P ∗i . We couple this structural equation with an expanded version of the

classical measurement error model given above,

Si = S∗i + u1i (8)

Zi = S∗i + v1i (9)

Pi = P ∗i + u2i (10)

Qi = P ∗i + v2i (11)

Substituting equations (8) and (10) into equation (7) and linearly projecting Si onto Zi, Qi, and Xi, as

well as Pi onto Zi, Qi, and Xi, we arrive at the simultaneous equations model

Yi = θ0Si + φ0Pi + γ′0Xi + εi (12)

Si = π011Zi + π012Qi + π′013Xi + ν1i (13)

Pi = π021Zi + π022Qi + π′023Xi + ν2i (14)

where now εi = εi−θ0u1i−φ0u2i. The precise conditions justifying the exclusion restriction in this simultaneous

equations model are now given by
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(A1′) (u1i, v1i, u2i, v2i) ⊥⊥ εi
(A2′) (u1i, v1i, u2i, v2i) ⊥⊥ (S∗i , P

∗
i , Xi)

(A3a′) u1i ⊥⊥ (v1i, u2i, v2i)
(A3b′) v1i ⊥⊥ (u1i, u2i, v2i)
(A3c′) u2i ⊥⊥ (v1i, u2i, v2i)
(A3d′) v2i ⊥⊥ (v1i, u2i, v2i)
(A4′) εi ⊥⊥ (S∗i , P

∗
i , Xi)

Above, the symmetry of the roles of Si and Zi led to a GMM system with 2(K + 1) moments. Here, Si and

Zi continue to play symmetric roles, but so also do Pi and Qi. This turns out to lead to a GMM system with

4(K + 2) moments. Specifically, rather than substituting into equation (7) equations (8) and (10), we could

instead substitute equations (8) and (11), or (9) and (10), or (8) and (11). Coupled with the associated linear

projections, this would lead to four related IV problems, all of which have the same structural parameters

as equation (7). The corresponding moments for the GMM estimator are

gi(β) = Wi



Zi(Yi − θ1Si − φ1Pi − γ′1Xi)
Qi(Yi − θ1Si − φ1Pi − γ′1Xi)
Xi(Yi − θ1Si − φ1Pi − γ′1Xi)
Si(Yi − θ2Zi − φ2Pi − γ′2Xi)
Qi(Yi − θ2Zi − φ2Pi − γ′2Xi)
Xi(Yi − θ2Zi − φ2Pi − γ′2Xi)
Zi(Yi − θ3Si − φ3Qi − γ′3Xi)
Pi(Yi − θ3Si − φ3Qi − γ′3Xi)
Xi(Yi − θ3Si − φ3Qi − γ′3Xi)
Si(Yi − θ4Zi − φ4Qi − γ′4Xi)
Pi(Yi − θ4Zi − φ4Qi − γ′4Xi)
Xi(Yi − θ4Zi − φ4Qi − γ′4Xi)



(15)

Imposing the restrictions θ1 = θ2 = θ3 = θ4, φ1 = φ2 = φ3 = φ4, and γ1 = γ2 = γ3 = γ4 results in

increased efficiency, yet also raises a new issue: redundancy of moments. In particular, define the row

vectors R1 = (−1, 0, 0′K , 1, 0, 0
′
K , 1, 0, 0

′
K ,−1, 0, 0′K) and R2 = (0,−1, 0′K , 0, 1, 0

′
K , 0, 1, 0

′
K , 0,−1, 0′K) and the

K × 4(K + 2) matrix R3 = (0K , 0K ,−IK , 0K , 0K , IK , 0K , 0K , IK , 0K , 0K ,−IK) and note that

((1/φ1)R1 − (1/θ1)R2) gi(β) = 0 (16)

R3 gi(β) = 0K (17)

These turn out to be the only linear combinations of the moments that yield zero. This implies that once we

impose the full set of restrictions, we only have 4(K + 2)− (K + 1) = 3K + 7 linearly independent moments,

rather than 4(K + 2).

The most direct way to address redundancy is simply to drop equations from the overall system until the

moments are linearly independent. However, an unfortunate feature of GMM is that estimates are not invariant

to which set of K+1 moments are dropped. This turns out to affect our elasticity estimates in the second decimal
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place. This is related to the lack of invariance of over-identified GMM to linear transformations of the moments.23

In recent years a number of competitors to GMM have emerged for solving method of moments problems (see

Imbens (2002) for a review). These estimators have the same first-order asymptotic properties as GMM, but

different higher-order properties. An important advantage of this class of estimators is that estimates are numeri-

cally invariant to which set of moments we elect to drop. We focus here on EL, which is one such estimator. EL is

known to exhibit small second-order asymptotic bias (Newey and Smith 2004), good power (Owen 2001), and po-

tentially a more reliable test of the overidentifying restrictions (Imbens et al. 1998). We briefly describe the idea

of EL estimation and our computational approach, but refer the reader to the literature for additional details.

Following Imbens (1993) and Qin and Lawless (1994), EL estimates are defined as the solution to

max
p1,p2,...,pn,β

∑
i

ln pi s.t. pi ≥ 0, 1 =
∑
i

pi, and 0 =
∑
i

pigi(β) (18)

where now we redefine gi(β) to be a set of L ≡ 3K + 7 linearly independent moments from among the original

gi(β). Computing the empirical likelihood estimator is not straightforward, however, due to the non-linearity

of the program, even for moment problems where gi(β) is linear in β. Following Imbens (1997), Newey and

Smith (2004), and Guggenberger and Hahn (2005), the empirical likelihood estimator for β can be viewed

as the solution to a program in terms of β, and a vector of L Lagrange multipliers λ, given by

min
β

max
λ

∑
i

log
(
1 + λ′gi(β)

)
(19)

and the Lagrange multipliers are related functionally to the empirical likelihood probabilities as npi =

(1 + λ′gi(β))−1. Let α = (λ′, β′)′. The saddlepoint problem above has first order conditions

mi(α) =
1

1 + λ′gi(β)

(
gi(β)
G′iλ

)
(20)

which have a derivative matrix

Mi(α) =
1

1 + λ′gi(β)

(
0L×L Gi
G′i 0J×J

)
− 1

(1 + λ′gi(β))2

(
gi(β)gi(β)′ gi(β)λ′Gi
G′iλgi(β)′ G′iλλ

′Gi

)
(21)

Following Guggenberger and Hahn (2005), we use Newton iteration with a stepsize of one, starting from the

initial condition α = (0L, β̂
′
2)′ where β̂2 is the two-step GMM estimator.24 As those same authors note, three

iterations suffice for second-order asymptotic equivalence to the fully iterated empirical likelihood estimator.

23On this point from a more general perspective see, for example, Hansen, Heaton and Yaron (1996), Imbens (1997), Imbens,
Spady and Johnson (1998), or Hall (2005).

24That is, we estimate Ω̂ = 1
n

∑
i gi(β̂1)gi(β̂1)′, where β̂1 = arg minβ g(β)′g(β), and compute β̂2 = arg minβ g(β)′Ω̂−1g(β).
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Moreover, in our application, iterating more than three times is sufficient for convergence and changes the

estimates only in the 7th or 8th decimal place.

The EL test of the overidentifying restrictions is computed as

T = 2
n∑
i=1

ln(1 + λ̂′gi(β̂)) (22)

We have not yet explored the Lagrange multiplier approach advocated by Imbens et al. (1998).

V. Results

We begin our discussion of the results with an examination of the first stage relationship between growth rates

in the two measures of police, presented in Table 3A. The first five columns of Table 3A present coefficients

and standard errors from models in which the growth rate in the LEOKA measure is regressed on the growth

rate in the ASG measure. These models correspond to what we term our “forward” regressions, models in

which the LEOKA measure is employed as the endogenous measure of police that is measured with error and

the ASG measure is employed as the instrumental variable. The final five columns present results arising from

a regression of the ASG measure on the LEOKA measure. We refer to models arising from this formulation

as our “reflected” regressions. We begin, in specification (1), by presenting a regression of the growth rate

in the LEOKA measure on the growth rate in the ASG measure, conditional on the growth rate in the city’s

population and a vector of year dummies. This specification is standard in the literature. In column (2),

we add the first difference in the log of the city’s total budgetary expenditures exclusive of police expenditures

to capture time-varying shocks to a city’s budget cycle. Each of the first two columns pertains to the entire

1960-2010 sample period. Columns (3)-(5) refer to the period spanning 1970-2010, the years for which detailed

city-level demographic data are available. Column (3) presents estimates that are equivalent to those in column

(2) with the exception that results are based on the 1970-2010 sample. In column (4), we add a series of log

differenced demographic controls. These capture year-over-year changes in the proportion of a city’s population

that is comprised of sixteen age-race-gender subgroups.25 Finally, in column (5), we include an unrestricted set

of polynomials and interactions between each of the demographic variables in order to flexibly model the effect

of changes in a city’s demographic composition on its growth rate in crime. Comparisons between column

(3) and columns (4) and (5) reveal the extent to which the first stage relationship between the growth rates in

the police measures is robust to demographic controls. Columns (6)-(10) are equivalent to columns (1)-(5) but

25The demographic variables arise from a fully interacted set of variables that consist of two races (white and nonwhite),
four age groups (0-14, 15-24, 25-39 and >40) and both genders).
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pertain to the reflected first stage regressions. Throughout Table 3A, and in subsequent tables, we report two

sets of standard errors: Huber-Eicker-White standard errors that are robust to the presence of heteroskedasticity

are reported in parentheses below the coefficient estimates and robust standard errors clustered at the city

level are reported below in square brackets. These different standard error approaches are highly similar.

The F-statistic on the excluded instrument is reported below the coefficient estimates as a standard test of

instrument relevance. As the smallest F-statistic we report exceeds 100, subsequent IV estimates reported

throughout the paper do not suffer from common problems that are associated with weak instruments.

The coefficients reported in Table 3A provide a measure of the relatedness of the growth rates in each of the

two sworn officer series. Consistent with the scatterplots presented in Figure 3, the coefficients reported in Table

3A are relatively small in magntiude, indicating that each measure contains an appreciable amount of noise.

Referring for example, to column (1) of Table 3A, we observe that, conditional on the growth rate in population,

a one percent increase in the ASG measure is associated with only a 0.17 percent increase in the LEOKA

measure. Put differently, the growth rate in the ASG measure explains just 13 percent of the variation in the

growth rate of the LEOKA measure. Referring to the remaining columns in the table, we likewise report evidence

that the magnitude of the coefficients is relatively insensitive to the inclusion of controls for budget cycles and

demographics.26 Referring to columns (6)-(10) which report results for the reflected first stage regressions, we

observe coefficients that are substantially larger in magnitude than the coefficients in columns (1)-(5). These

differing magnitudes are expected since the LEOKA measure of police growth rates exhibits less variance than

the ASG measure, as the first stage coefficient is the covariance between the two measures, relative to the variance

of the predicting variable. The results differ only slightly when additional controls are added to the specification.

In Table 3B, we present coefficients arising from a series of least squares models of the effect of police on

each of seven crime types and two crime aggregates, maintaining the same table structure introduced in Table

3A. Consistent with least squares results reported by prior researchers, we report modest elasticities of crime

with respect to police. We begin our discussson referring to column (1) of Table 3B, which conditions only

on the growth rate in population and year fixed effects. Using the LEOKA measure of police officers, these

elasticities are largest for murder (-0.27), robbery (-0.20) and motor vehicle theft (-0.19). All three elasticities

are statistically significant at conventional significance levels. Overall, the elasticity is greater for violent crime

(-0.12) than for property crime (-0.07). As with the first stage results, the estimated elasticites are surprisingly

insensitive to the inclusion of control variables for either budget cycles or demographic composition.27 Columns

26We note that the estimated coefficient is approximately 10 percent smaller with the inclusion of polynomials and interactions
in demographics.

27Referring to column (2) which adds controls for the budget cycle and changes in a city’s demographic composition, the results are
nearly identical to those in column (1). Likewise, estimates reported in columns (4) and (5) are similar to those reported in column (3).
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(6)-(10) report results for models in which the growth rate in crimes is regressed on the growth rate in the ASG

measure of police.28 While the coefficients in columns (6)-(10) are smaller in magnitude, reflecting a weaker

association between this measure of police and crime, they are also more precisely estimated with significant

coefficients for murder (-0.23), robbery (-0.09) and motor vehicle theft (-0.09). Taken as a whole, least squares

estimates of the elasticity of crime with respect to police point to a modest but persistent relationship between

changes in police manpower and criminal activity. To underscore this point, regardless of whether we rely

on the forward or the reflected regressions, we note that a 10 percent increase in the size of a city’s police

force (which would correpond to an unusually large and costly change in the policy regime) is predicted to

lead to only a 1 percent reduction in the rate of violent and property crimes. Many researchers confronting

such estimates have concluded that least squares estimates are inconsistent due to simultaneity bias.

In Tables 3C we report IV estimates of each crime elasticity that correct for measurement error. These

estimates are typically four to five times larger in magnitude than those estimated via least squares.29 Referring

to column (1) which uses the full 1960-2010 sample to estimate the “forward” IV regressions, the largest

elasticites are those for murder (-1.34), motor vehicle theft (-0.50), robbery (-0.48) and burglary (-0.23). In

addition, we report precisely estimated elasticities for each of the two crime aggregates of -0.32 for violent

crimes and -0.14 for property crimes. The elasticities arising from the “reflected” IV regressions reported

in columns (6)-(10) exhibit a similar pattern though the estimated coefficients are substantially smaller in

magnitude with elasticities for murder, robbery and motor vehicle theft of -0.72, -0.52 and -0.52, respectively.

Elasticities for the crime aggregates are -0.32 for violent crimes and -0.18 for property crimes.

The elasticities reported in Table 3C reveal considerable attenuation in least squares coefficients resulting

from the presence of measurement errors in the police series. Given the degree of the attenuation, it should

be clear that measurement error is a prominent factor underlying discrepancies between least squares and IV

coefficients that have been estimated in prior research. However, because the potential for simultaneity bias

remains, the models estimated in Table 3C do not convincingly identify a “state-of-the-art” causal estimate

of the effect of police on crime. That is, while these models remove between-city variation via differencing

and control for national crime trends, city-specific budget cycle shocks and changes in a city’s demographic

composition, we are unable to rule out the existence of unit and time-varying confounders which are correlated

with both changes in the size of a city’s police force and its crime rate. In particular, it is possible that

28To our knowledge, this is the first time a panel data regression of crime on the ASG measure has been run. This important,
because of the possibility of specification searching mentioned above.

29A familiar result is that the IV estimate can be recovered by dividing the “reduced form” estimate of the police elasticites
in Table 3B by the first stage estimate presented in Table 3A. In this context, to recover the forward IV coefficients presented
in columns (1)-(5) of Table 3C, we would divide the reflected least squares coefficients in columns (6)-(10) of Table 3B by the
first stage coefficient. Due to the presence of missing data, this arithmetic does not exactly reproduce the relevant IV coefficients.
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changes in regional macroeconomic conditions, idiosyncratic shocks to regional crime markets or changes

in state-level criminal justice policies, each of which is unaccounted for in the models presented in Table 3,

will lead to inconsistent parameter estimates. The omission of time-varying state-level policy variables is

especially concerning as the adoption of a “get tough on crime” attitude among a state’s lawmakers (or its

citizens) might plausibly lead to both increases in police and more punitive sentencing policies. The result

would be a negatively biased police elasticity (too large in magnitude) as we would mistakenly attribute some

portion of increased punitiveness to the effect of increases in police manpower.

Fortunately, since sentencing policy is determined almost entirely at the state level, we can address this

potential source of bias with the inclusion of a set of unrestricted state-by-year fixed effects. These state-by-year

effects add an additional 1,700 parameters to each set of IV estimates, but also increase the R2 to nearly

60 percent for most crime categories.

Tables 4A, 4B and 4C report first stage, least squares and IV estimates for models that include an

exhaustive set of unrestricted state-by-year effects. In Table 4A, we observe that the relatedness between

the growth rates LEOKA and ASG measures of police is very similar to results reported in Table 3A, with the

estimated coefficient in the forward regression declining from approximately 0.17 to 0.15. Consistent with the

extraordinary explanatory power of the state-by-year effects, we note that in both the forward and reflected

first stage regressions, the effect of the control variables for budget cycles and demographic composition is

greatly diminished conditioning on the state-by-year effects. However, as the relationship between the police

measures is not heavily related to the state-by-year effects, the F-statistic on the excluded instrument remains

quite high, continuing to exceed a value of 100 in all cases.

Table 4B reports least squares estimates of the effect of police on crime, inclusive of the state-by-year effects.

Referring to column (1), the elasticities for the violent and property crime aggregates are -0.13 and -0.05 respec-

tively, with both elasticities meeting the standard threshold for statistical significance. Elasticities are largest for

murder (-0.22), robbery (-0.21) and motor vehicle theft (-0.13). The reflected least squares estimates are likewise

similar to those reported in Table 3B with a violent crime elasticity of -0.06 and a property crime elasticity of -

0.02. 30 Finally, in Table 4C, we present IV results that correct for attentuation bias in least squares. Conditional

upon state-by-year effects, we report a violent crime elasticity that is approximately -0.35 and a property crime

elasticity that is approximately -0.14. With regard to the individual crimes, elasticities are largest for murder (be-

tween -0.51 and -0.83), robbery (between -0.50 and -0.59), motor vehicle theft (between -0.26 and -0.37) and bur-

glary (between -0.16 and -0.29). While the coefficient on robbery does not change appreciably from Table 3C to

30Notably, the murder elasticity is substantially smaller at -0.13.
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Table 4C, coefficients on murder and motor vehicle theft are approximately 50 percent smaller with the inclusion

of the unrestricted state-by-year effects as compared to the standard first diffrencing specification. We interpret

this as evidence in favor of the presence of substantial time-varying unobserved heterogeneity at the state-level.

We have, thus far, privileged estimates in columns (1)-(5) of Tables 3 and 4 to estimates reported in columns

(6)-(10). We do so because the primary measure of police that is employed in prior research is the LEOKA

measure drawn from the FBI’s Uniform Crime Reports and, as such, mismeasurement in this series is of greater

relevance in comparing our results to those reported in the extent literature. However, with regard to estimating

a police elasticity, it is important to note that we have no a priori reason to prefer the estimated elasticities in

columns (1)-(5) to those in columns (6)-(10). In principle, both the forward and reflected IV regressions contain

valuable information in estimating the responsiveness of crime to changes in the number of police personnel.

Accordingly, a state-of-the-art estimate of the effect of police on crime should draw upon information contained

in both sets of estimates. In Table 5, we present pooled estimates of the elasticity of crime with respect to police

that efficiently combine information from both the forward and reflected IV regressions presented in Table

4C. For each crime type and for each of two measures of the city’s population, Table 5 computes an estimated

elasticity with robust standard errors in parentheses below the reported coefficients. Pooled estimates are

computed both via one-step and two-step GMM estimation and via empirical likelihood (EL).31 Panel A reports

pooled elasticities for models which use the growth rate in the city’s population in the LEOKA file as a control

variable while Panel B reports pooled elasticities using the growth rate in population measure from the ASG file.

As we are pooling information conatined in the forward and the reflected IV regressions, the elasticities reported

in Panel A are smaller in magnitude than those reported in column (1) of Table 4C, but larger in magnitude than

those in column (5), and are estimated with enhanced precision as standard errors are approximately 12 percent

smaller than the smaller of the elasticities estimated via 2SLS. We likewise note the extraordinary similarity

between two-step GMM and EL estimates of the police elasticity. Pooling the estimates using empirical

likelihood, we report precisely estimated elasticities of between -0.51 and -0.59 for murder, between -0.52

and -0.56 for robbery, between -0.28 and -0.33 for motor vehicle theft and between -0.15 and -0.20 for burglary.

With regard to the crime aggregates, we report an elasticity of between -0.27 and -0.35 for violent crimes and

between -0.09 and -0.14 for property crimes. Treating annual population growth as being measured without

error, these estimates represent our best guess regarding the police elasticity and are our preferred estimates.

As we have noted, under classical measurement error, the forward and reflected IV regressions provide

two estimates of the same underlying parameter. This observation gives rise to an overidentification test

31Since the derivatives are constant in the parameters, the resulting GMM estimates converge after the second step.
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in which we can test the equality of the forward and reflected IV coefficients which form the basis for the

pooled parameter estimates in Table 5. As we demonstrate in the preceeding section of the paper, this test

of overidentifying restrictions provides an omnibus test for the presence of classical measurement errors. In the

bottom panel of Table 5, for the estimates in panels A and B, we report a likelihood ratio test statistic which

provides a measure of the degree to which the two parameter estimates differ.32 Under the null hypothesis of

classical measurement error, the test statistic has a χ2 distribution with one degree of freedom. Given a critical

value for the test of 3.84, an examination of Table 5 reveals that we fail to reject the null hypothesis of classical

measurement error in each of nine tests. We interpret the equivalence of the IV coefficients reported in Table

4C as providing little evidence against the existence of classical measurement error in the police measures and

consequently, as evidence in favor of the consistency of the estimated elasticities in Table 4C and in Table 5.

We further supplement the results of the tests of overidentifying restrictions presented in Table 5 with several

additional analyses that are designed to either directly or indirectly test each of the assumptions of the classicial

measurement error model individually. Recall conditions (A1), (A2), and (A3), discussed above. Condition

(A1) states that the measurement errors must be independent of the residual in the outcome equation. A

testable implication of (A1) is that the mesurement errors must be independent of the growth rates in each of

the seven crimes we test and the two crime aggregates. Condition (A2) requires that the measurement errors be

independent of the signal while condition (A3) requires that the measurement errors be independent of each other.

To test these two conditions, we introduce a third measure of police manpower and modify conditions (A1)-(A3)

in the obvious ways to reflect a third measurement error. With three measures of manpower, and under the

classical measurement error hypothesis, the difference between any two measures is the difference in measurement

errors. Under (A2) and (A3), the difference in two measurement errors cannot be related to the third manpower

measure, because the third measure is comprised of the signal, which the measurement error difference should

not predict, and a third measurement error, which the measurement error difference should not predict.

Table 6 presents additional evidence on the existence of classical measurement error for three incarnations

of the measurement errors, each of which corresponds to the difference between two different measures of

police manpower. Our third measure of police manpower is drawn from the Law Enforcement Management

and Administrative Statistics (LEMAS) series. These data, which have been collected at regular intervals from

1987-2007 provide an additional measure of police in our sample of 242 cities.33 In Table 6, Column (1) expresses

the measurement error as the difference between the growth rate in the LEOKA measure and the growth rate in

the LEMAS measure while columns (2) and (3) use the difference between the LEOKA measure and the ASG

32Here, the test statistic is computed via two-step GMM.
33For additional details regarding the LEMAS series, please see the data appendix to the paper.
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measure and the difference between the LEMAS measure and the ASG measure, respectively. We begin in Panel

A of Table 6, by regressing the growth rate in each of the nine crime types on each incarnation of the measurement

error, conditional on the growth rate in population. To the extent that the measurement error is not correlated

with the growth rate in each type of crime, it should not be correlated with ε, the error term in the structural

equation. Table 6 provides twenty-seven tests of this hypothesis, three for each crime type. We fail to reject the

null hypothesis of a relationship between the measurement errors and growth rate in crime in all but five cases.

Moreover, when each of the seven crime rates are included as regressors in the same regression, in each case, we

fail to reject that the coefficients are jointly different from zero. Finally, in Panel B of Table 6, we provide a joint

test of conditions (A2) and (A3), as discussed above. An examination of the coefficients for each of the three

incarnations of the measurement errors reveals that we fail to reject that the measurement errors are related to

the signal. Notably, the estimated coefficients are extremely small as a one percent increase in the growth rate

of a given police measure is found to be associated with only a 0.3-0.8 percent change in the measurement error.

In Table 5, we reported pooled estimates of the police elasticity under two different measures of the growth

rate in a city’s population. Conditional on choosing one of these two measures of the population growth rate,

we presented evidence that IV coefficients from the forward and reflected regressions did not differ significantly

from one another which we interpreted as providing little evidence against the classical measurement error

hypothesis. However, we did not directly address the degree to which the estimates in Panel A and Panel B

differ from one another. In particular, it is possible that the magnitude of the police elasticities are sensitive to

mismeasurement of the growth rate in a city’s population. This is an especially salient concern as the coefficient

arising from a regression of the growth rate in one population measure on the growth rate in another is just

0.65. In order to assess the degree to which the police elasticity is responsive to such mismeasurement, we

instrument for each measure of the population growth rate with its counterpart and report the results in Table

7. In Table 7, Panel A reports resulting parameter estimates in models where the ASG population measure

is used as an instrument for the LEOKA population measure while Panel B corresponds to the reflected

configuration. Here, we see that the resulting police elasticities are slightly larger in magnitude than those

reported in Table 5. In particular, using EL, in panel A, we report elasticities for murder, robbery and motor

vehicle theft of approximately -0.58, -0.61 and -0.36, respectively. These compare with -0.59, -0.57 and -0.33

in Panel A of Table 5. Referring to Panel B, we see that the degree to which the estimated police elascities

differ based on which population measure is employed as the instrument is extremely limited. Formally, this

can be seen via an examination of the test statistics reported in Table 7. These test statistics represent tests

of the equality of the empirical likelihood parameters in Panels A and B. As the test is distributed chi2 with
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3 degrees of freedom, the test has a critical value of 9.35. Accordingly, there is extremely little evidence that

the pooled estimates in Panels A and B of the table differ. In Panel C, we implement the EL version of the

GMM estimator described in (15) and estimate police elasticities that pool the elasticities reported in Panels

A and B. These estimates represent our best guess regarding the police elasticity. Here, we report precisely

estimated elasticities of -0.59 for murder, -0.58 for robbery, -0.35 for motor vehicle theft and -0.22 for burglary.

With regard to the aggregates, we report an elasticity of -0.36 for violent crimes and -0.15 for property crimes.

VI. Discussion

The IV estimates reported in the previous section of this paper can be thought of as police elasticities that are

robust to errors in the measurement of police. Conditional upon only year fixed effects, we find elasticities of

violent and property crimes with respect to police of approximately -0.3 and -0.15, respectively. Conditioning

on a set of fully interacted state-by-year effects, and pooling estimates from our forward and reflected IV

regressions and accoutning for mismeasurement of population, we report precisely estmated elasticities of -0.36

for violent crimes and -0.15 for property crimes, with especially large elasticities for murder (-0.59) robbery

(-0.58), motor vehicle theft (-0.35) and burglary (-0.22).

In this section, we contextualize these findings by comparing our reported elasticities to those in the prior

literature. Table 8 presents police elasticities from seven recent papers, each of which aims to correct for

simultaneity bias, which our estimates do not adjust for. Under the classical measurement error hypothesis,

these estimates jointly address bias arising from simultaneity and measurement errors. We compare each

of these estimated elasticities to those reported in this paper.

Prior research typically finds that police have a larger protective effect on violent crimes than on property

crimes. Violent crime elasticities that meet the standard threshold for statistical significance range from -0.44

to -0.99. An additional set of estimates using mayoral and gubernatorial elections as instruments, reported

by Levitt (1997) and McCrary (2002) report an elasticity that is similar in magnitude though is not precisely

estimated. With regard to the individual crimes, elasticities that meet the threshold of significance are typically

largest for murder (-0.84 and -0.91) and robbery (-1.34). However, despite consistently large point estimates,

results often remain insignificant due to the presence of correspondingly large standard errors. For example,

McCrary (2002) and Levitt (2002) report robbery elasticities of -0.98 and -0.45, respectively, though both

estimates are small relative to their standard error. With regard to property crimes, overall elasticities are

insignificant in two of three aggregate data analyses, with point estimates ranging from 0 to -0.5. Elasticities

for motor vehicle theft and burglary are typically largest with reported elasticities for motor vehicle theft
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of between -0.3 and -0.8 and for burglary of between -0.3 and -0.6.

Though each of the studies spans different numbers of cities and time periods, it is apparent that the

elasticities reported in this paper are quite similar to those reported in prior research. Since our estimated

elasticities are robust to measurement error and state and time-varying omitted variables but not the presence

of simultaneity between police and crime, our research implies a smaller role for simultaneity than has been

suggested by prior studies. Moreover, there is evidence that appears to support the proposition that changes

in police hiring are often idiosyncratic and that it is difficult for cities to hire police during, or in anticipation

of, a crime wave - at least in the short run. In particular, cities may have other objectives in regards to

police staffing than the intertemporal smoothing of the marginal disutility of crime. Consider the example

of Detroit’s police numbers over the period 1975-1984. Mayor Coleman Young sought to aggressively hire

officers under an affirmative action plan (Deslippe 2004). In 1977, 1245 officers were hired under the plan,

increasing the size of the police force by some 20 percent. The next year, a further 227 officers were hired

under the plan. After Detroit hired those officers, the city confronted a serious budget crisis. The city was

compelled to lay off 400 and 690 officers in 1979 and 1980, respectively. In 1981 and 1982, the city was able

to recall 100 and 171 of the laid off officers, respectively. However, a new round of cuts in 1983 undid this

effort, as 224 officers were again laid off. In 1984, 135 of those officers were recalled.34

These boom and bust patterns in police hiring are somewhat common and seem to reflect some combination

of city constraints and lack of foresight (Koper, Maguire and Moore 2001). For example, municipalities operate

under many borrowing constraints, including tax and expenditure limitations (Joyce and Mullins 1991, Advisory

Commission on Intergovernmental Relations 1995, Poterba and Rueben 1995, Shadbegian 1999), and balanced

budget requirements (Cope 1992, Rubin 1997, City of Boston 2007).35 Lewis (1994) reports that 99 of the

100 largest U.S. cities are required to balance the budget by state constitution, state statute, or city charter.

Perhaps in part because of these constraints, fiscal crises emerge with some regularity in cities, and this

leads to police layoffs. Responding to the recent financial crisis, Camden laid off 45 percent of its sworn

officers in early 2011 (Katz and Simon 2011). More historically, in 1981, Boston confronted a sluggish to

recessionary economy, Proposition 21/2, and a major Massachusetts Supreme Court decision that led to large

reductions in Boston’s property tax revenue.36 Seeking to balance the budget, the city reduced the police

34NAACP v. Detroit Police Officers Association, 591 F. Supp. 1194 (1984).
35Of course, balanced budget requirements have more bite in some jurisdictions than in others. New York City famously

required a last minute loan in 1975 from the federal government to avoid insolvency, yet the city charter requires a balanced
budget (Gramlich 1976). At the other end of the spectrum, Atlanta’s charter holds members of the city budget commission
personally liable for any deficit (Chang 1979).

36Tregor v. Assessors of Boston, 377 Mass. 602, cert. denied 44 U.S. 841 (1979). For background on Proposition 21/2, see
Massachusetts Department of Revenue (2007).
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department budget by over 27 percent. The department eliminated all capital expenditures, closed many

police stations, and reduced the number of sworn officers by 24 percent (Boston Police Department 1982).

Cities also frequently fail to anticipate the ripple effects of past booms in hiring. Pension rules lead to

spikes in retirement after 20 and 25 years, so a hiring boom two or more decades ago may result in a police

officer shortage. Describing the situation in Chicago in 1986, Recktenwald (1986) notes that “[i]n 1983, an

average of 32 officers a month left the force. Today the monthly average stands at 71, the records show. This

comes at a time when the department’s largest branch... is more than 1,000 officers short of the 7,940 level

authorized by the Chicago City Council”.

On the other hand, cities facing a difficult crime problem may be able to obtain extra funding from the

state or federal government, and this may lead to simultaneity bias. Describing the situation in Washington,

D.C., Harriston and Flaherty (1994) note that “[t]he [1994] hiring spree was a result of congressional alarm

over the rising crime rate and the fact that 2,300 officers—about 60 percent of the department—were about

to become eligible to retire. Congress voted to withhold the $430 million federal payment to the District

for 1989 and again for 1990 until about 1,800 more officers were hired.” Boston, in response to the 1981 crisis

in police staffing, ultimately obtained a lump sum disbursement from the state government that helped Boston

avoid deeper cuts to police department staffing.37

Overall, we suspect that our estimates are likely compromised somewhat by simultaneity bias. As noted

in McCrary (2002), criminologists and economists have argued for several decades now that the sign of the

bias is positive, leading to an underestimate of the magnitude of the policing elasticity. Thus, the correct

magnitude is likely at least as large as what our results indicate. While we continue to view our results as

representing a lower bound on the police elasticity, we note that an advantage of this approach is that we

report elasticities that are more precisely estimated than a majority of the results in the prior literature.

VII. Conclusion

In this paper, we have presented estimates of the elasticity of crime with respect to police for index offenses:

murder, rape, robbery, assault, burglary, larceny, and motor vehicle theft. These estimates are based on

annual data on crime and police in a panel data set of 242 cities observed from 1960-2010. Our specifications

model year-over-year growth rates in crime as a function of the year-over-year growth rate in the number

of sworn officers from the year preceding, as well as a large number of control variables including year effects,

state-by-year effects, budget cycles, and demographic controls.

37A succinct discussion of the local public finance implications of Proposition 21/2 and the Tregor decision is given in Boston
Firefighters Union Local 718 v. Boston Chapter NAACP, Inc., 468 U.S. 1206 (1984).
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Our main focus is on IV estimates where one noisy measure of the growth rate in police per capita is

instrumented using another noisy measure of the growth rate in police. Under the classical measurement

error model, the errors in measurement in one proxy are independent of the errors in measurement of the

other proxy and of unobserved factors influencing the growth rate in crime. These assumptions imply that

IV is consistent for the elasticity of crime with respect to police.

One implication of the classical measurement error hypothesis is that there are two consistent IV estimators.

The first instruments one noisy measure of the growth rate in police per capita with another noisy measure

of the growth rate in police. The second instruments the other noisy measure of the growth rate in police

per capita with the one. That two consistent estimators are available for the police elasticity suggests pooling

the two estimates to arrive at an efficient minimum chi-square estimate of the police elasticity. This approach

also yields an immediate test of the classical measurement error hypothesis in the form of the minimized

value of the test statistic. Generally speaking, there is little evidence in these tests against the null hypothesis

of classical measurement error.

Our focus on measurement error stands in contrast to the previous literature, which has instead emphasized

the potential for simultaneity bias, whereby cities or perhaps police departments take heed of ongoing and

possibly upcoming trends in crime and hire police officers accordingly. We have instead emphasized the variety

of institutional considerations that make such lifecycle optimization challenging for cities and departments,

including tax and expenditure limitations, the de facto requirement to balance the city budget under state

constitution, state statute, or city charter, and the predominance of policing costs as a fraction of the city

budget. An additional consideration is that cities and departments may simply fail to optimize appropriately.

For example, many cities report staffing difficulties in the wake of retirement booms, but these are of course

largely predictable based on simple actuarial projections using years of service and year hired. As an empirical

matter, cities seem to engage in boom and bust hiring with relatively little attention paid to the level of crime

and relatively more attention paid to shortfalls of police staffing from recent norms.

Consistent with this reasoning, our estimates are robust to the inclusion of a variety of control variables that

have direct bearing on crime, in particular budget cycles and demographic variables. Indeed, our estimates

are robust to the inclusion of unrestricted state-by-year effects. This implies that our estimates represent

a pure effect of policing that cannot be attributed to, for example, changes to punishment policy since those

are made at the state level. Our best guess regarding the elasticity of crime with respect to police is -0.5

for violent crime and -0.25 for property crime. Crime categories where police seem to be most effective are

murder, robbery, and motor vehicle theft. Our estimates are similar to those found in the previous literature,
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but are somewhat more precisely estimated.
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Figure 1. Sworn Officers in Five Cities:
the Uniform Crime Reports and Direct Measures from Departments
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C. Chicago
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E. Lincoln, Nebraska
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Note: In panel A, numbers for 1960-1994 are adjusted to account for the 1995 merger

of NYPD with housing and transit police. See Data Appendix for details.

Figure 2. Sworn Officers in Chicago 1979-1997, by Month
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Figure 3. Two Leading Measures of Sworn Officers:
the Uniform Crime Reports and the Annual Survey of Government
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Figure 4. Location of Cities in Sample
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Figure 5. Aggregate Trends in Violent and Property Crime and Police:
Evidence from the Uniform Crime Reports

A. Violent Crime: Murder, Rape, Robbery, Aggravated Assault
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B. Property Crime: Burglary, Larceny, Motor Vehicle Theft
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C. Sworn Police
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Note: In the UCR data, larceny is defined to exclude motor vehicle theft. Solid circles

give totals and open circles give standard deviations of year-over-year growth rates.

See text and Data Appendix for details.



Table 1. Correlation of UCR and Police Department
Measures of Number of Sworn Personnel

Measure New York Los Angeles Chicago Boston Lincoln
Log Sworn Police 0.65 0.99 0.96 0.98 0.99
Growth Rate 0.32 0.92 0.65 0.94 0.45
Note: Table entries are correlation coefficients between the UCR measure of the number of sworn police

and a measure of the number of sworn police taken from police department reports. Annual report data

for Boston in 1982 are omitted from the calculations.



Table 2. Summary Statistics on Police and Crime

Levels Log Differences
(per 100,000 population)

Variable N Mean S.D. Min. Max. Mean S.D. Min. Max.

Sworn police 12,157 O 248.5 114.0 52.6 786.6 0.014 0.056 -1.359 1.148
(LEOKA) B 107.2 0.012

W 39.1 0.055

Sworn police 11,960 O 255.0 122.3 40.3 779.8 0.016 0.080 -1.401 1.288
(ASG) B 110.3 0.011

W 51.7 0.079

Violent crimes 12,021 O 930.8 629.4 6.6 4189.0 0.035 0.171 -1.804 1.767
B 411.9 0.020
W 473.3 0.170

Murder 12,274 O 14.2 10.5 0.0 110.9 0.015 0.410 -4.277 4.091
B 8.1 0.015
W 6.7 0.410

Rape 12,101 O 46.4 29.8 0.0 310.5 0.035 0.323 -4.384 4.199
B 16.6 0.029
W 24.7 0.322

Robbery 12,187 O 424.9 344.2 1.1 2,358.0 0.034 0.212 -2.639 2.565
B 242.5 0.018
W 244.3 0.211

Assault 12,176 O 465.2 338.9 1.0 2,761.3 0.037 0.228 -2.833 3.129
B 204.4 0.023
W 270.7 0.226

Property crimes 12,177 O 5,980.4 2,415.2 155.6 18,345.2 0.015 0.124 -2.330 1.769
B 1,316.3 0.014
W 2,025.3 0.124

Burglary 12,192 O 1,588.2 815.9 37.7 6,713.5 0.011 0.158 -2.457 2.030
B 417.7 0.018
W 701.1 0.157

Larceny 12,185 O 3,528.3 1,513.0 84.2 11,590.7 0.017 0.135 -2.228 2.146
B 934.4 0.015
W 1,191.0 0.134

Motor vehicle 12,186 O 862.7 570.7 8.4 5,294.7 0.012 0.178 -2.833 1.899
theft B 363.2 0.017

B 440.4 0.177

Note: This table reports descriptive statistics for the two measures of sworn police officers used throughout the article as well as for each of

the seven crime categories and two crime aggregates. For each variable, we report the overall mean, the standard deviation decomposed into

overall (“O”), between (“B”), and within (“W”) variation, as well as the minimum and maximum values, in levels and growth rates. Results

are weighted by 2010 city population.



Table 3A. First Stage Models

EC = LEOKA Measure EC = ASG Measure
INS = ASG Measure INS = LEOKA Measure

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

ASG measure 0.168 0.168 0.144 0.141 0.152
(0.014) (0.014) (0.013) (0.013) (0.014)
[0.018] [0.018] [0.017] [0.017] [0.018]

LEOKA measure 0.359 0.359 0.342 0.338 0.353
(0.029) (0.029) (0.033) (0.033) (0.035)
[0.034] [0.034] [0.038] [0.039] [0.043]

F-statistic 153.0 152.2 116.7 124.7 122.5 150.6 150.2 109.3 107.5 100.4
N 11,036 11,036 8,869 8,869 8,869 11,036 11,036 8,869 8,869 8,869

sample 1960- 1960- 1970- 1970- 1970- 1960- 1960- 1970- 1970- 1970-
year effects yes yes yes yes yes yes yes yes yes yes
budget cycles no yes yes yes yes no yes yes yes yes
demographics no no no yes yes no no no yes yes
polynomials and no no no no yes no no no no yes
interactions

Note: Each column reports results of a least squares regression of the growth rate in a given measurement of the number of per capita police officers

on the the growth rate in the other measurement. Columns (1)-(5) report results for the models in which the LEOKA measure is employed as the

endogenous covariate and the ASG measure is employed as the instrumental variable while columns (6)-(10) report results for models in which the

ASG measure is employed as the endogenous covariate and the LEOKA measure is employed as the instrumental variable. For each set of models,

the first column reports regression results, conditional on the growth rate in the city’s population and a vector of year effects. The second column

adds a control variable for the city’s per capita expenditures exclusive of police expenditures. The third column is the same as column (2) with the

exception that estimation is done using the 1970-2010 sample. In the fourth column we add demographic controls which capture the proportion of a

city’s population that is comprised of each of twleve age-gender-race groups. Finally, in the fifth column, we add polynomial terms and selected

interactions of the demographic variables. All models are estimated using 2010 city population weights. Two sets of standard errors are reported

below the coefficient estimates. The top row reports Huber-Eicker-White standard errors that are robust to heteroskedasticity. The standard errors

reported in the second row are clustered at the city level.



Table 3B. Least Squares Models of the Effect of Police on Crime

EC = LEOKA Measure EC = ASG Measure
INS = ASG Measure INS = LEOKA Measure

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Violent crimes -0.123 -0.124 -0.064 -0.069 -0.068 -0.063 -0.064 -0.050 -0.052 -0.051
(0.037) (0.037) (0.036) (0.035) (0.034) (0.024) (0.024) (0.021) (0.021) (0.021)
[0.035] [0.036] [0.036] [0.031] [0.032] [0.019] [0.019] [0.021] [0.022] [0.021]

Murder -0.272 -0.275 -0.265 -0.268 -0.258 -0.234 -0.235 -0.239 -0.241 -0.243
(0.071) (0.071) (0.076) (0.076) (0.076) (0.063) (0.063) (0.071) (0.071) (0.072)
[0.089] [0.089] [0.081] [0.080] [0.080] [0.066] [0.067] [0.078] [0.079] [0.079]

Rape -0.080 -0.080 0.019 0.003 0.009 -0.070 -0.070 -0.076 -0.081 -0.076
(0.069) (0.069) (0.060) (0.058) (0.057) (0.066) (0.066) (0.072) (0.073) (0.073)
[0.067] [0.067] [0.047] [0.046] [0.047] [0.064] [0.064] [0.072] [0.072] [0.072]

Robbery -0.196 -0.196 -0.172 -0.178 -0.178 -0.085 -0.085 -0.091 -0.093 -0.092
(0.047) (0.047) (0.048) (0.046) (0.045) (0.032) (0.032) (0.029) (0.028) (0.028)
[0.053] [0.054] [0.054] [0.048] [0.048] [0.026] [0.026] [0.026] [0.026] [0.026]

Assault -0.056 -0.058 0.018 0.015 0.016 -0.025 -0.026 -0.002 -0.005 -0.004
(0.043) (0.043) (0.041) (0.041) (0.040) (0.029) (0.029) (0.025) (0.025) (0.025)
[0.037] [0.037] [0.040] [0.038] [0.039] [0.026] [0.026] [0.026] [0.027] [0.027]

Property crimes -0.071 -0.069 -0.048 -0.049 -0.048 -0.024 -0.023 -0.030 -0.031 -0.030
(0.028) (0.028) (0.030) (0.028) (0.027) (0.020) (0.020) (0.021) (0.020) (0.020)
[0.022] [0.022] [0.028] [0.027] [0.028] [0.014] [0.014] [0.019] [0.020] [0.019]

Burglary -0.060 -0.058 -0.021 -0.023 -0.025 -0.039 -0.038 -0.044 -0.048 -0.048
(0.042) (0.042) (0.046) (0.041) (0.039) (0.027) (0.027) (0.024) (0.024) (0.024)
[0.033] [0.033] [0.036] [0.035] [0.035] [0.016] [0.016] [0.021] [0.022] [0.022]

Larceny -0.040 -0.038 -0.024 -0.023 -0.020 0.001 0.001 -0.008 -0.008 -0.007
(0.030) (0.030) (0.033) (0.031) (0.031) (0.021) (0.021) (0.022) (0.021) (0.021)
[0.021] [0.021] [0.029] [0.029] [0.030] [0.014] [0.014] [0.016] [0.015] [0.016]

Motor vehicle -0.190 -0.189 -0.170 -0.175 -0.173 -0.085 -0.084 -0.072 -0.070 -0.067
(0.049) (0.049) (0.058) (0.054) (0.052) (0.033) (0.033) (0.038) (0.037) (0.036)
[0.042] [0.042] [0.046] [0.045] [0.047] [0.043] [0.043] [0.050] [0.051] [0.050]

sample 1960- 1960- 1970- 1970- 1970- 1960- 1960- 1970- 1970- 1970-
year effects yes yes yes yes yes yes yes yes yes yes
budget cycles no yes yes yes yes no yes yes yes yes
demographics no no no yes yes no no no yes yes
polynomials no no no no yes no no no no yes
and interactions

Note: Each column reports results of a least squares regression of thegrowth rate in each of nine crime rates on the first lag of the growth rate in

the number of per capita sworn police officers. Columns (1)-(5) report results for the models in which the LEOKA measure is employed as the

endogenous covariate and the ASG measure is employed as the instrumental variable while columns (6)-(10) report results for models in which the

ASG measure is employed as the endogenous covariate and the LEOKA measure is employed as the instrumental variable. For each set of models,

the first column reports regression results, conditional on the growth rate in the city’s population and a vector of year effects. The second column

adds a control variable for the city’s per capita expenditures exclusive of police expenditures. The third column is the same as column (2) with the

exception that estimation is done using the 1970-2010 sample. In the fourth column we add demographic controls which capture the proportion of a

city’s population that is comprised of each of twleve age-gender-race groups. Finally, in the fifth column, we add polynomial terms and selected

interactions of the demographic variables. All models are estimated using 2010 city population weights. Two sets of standard errors are reported

below the coefficient estimates. The top row reports Huber-Eicker-White standard errors that are robust to heteroskedasticity. The standard errors

reported in the second row are clustered at the city level.



Table 3C. 2SLS Models of the Effect of Police on Crime

EC = LEOKA Measure EC = ASG Measure
INS = ASG Measure INS = LEOKA Measure

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Violent crimes -0.318 -0.320 -0.314 -0.334 -0.330 -0.323 -0.326 -0.158 -0.181 -0.171
(0.130) (0.131) (0.135) (0.133) (0.134) (0.101) (0.101) (0.104) (0.100) (0.099)
[0.104] [0.104] [0.125] [0.132] [0.134] [0.088] [0.089] [0.097] [0.086] [0.088]

Murder -1.339 -1.350 -1.584 -1.627 -1.655 -0.721 -0.729 -0.718 -0.736 -0.710
(0.426) (0.428) (0.555) (0.564) (0.571) (0.237) (0.239) (0.228) (0.235) (0.236)
[0.392] [0.393] [0.499] [0.507] [0.514] [0.202] [0.203] [0.228] [0.229] [0.228]

Rape -0.360 -0.360 -0.488 -0.529 -0.500 -0.199 -0.198 0.097 0.045 0.063
(0.379) (0.379) (0.477) (0.489) (0.494) (0.182) (0.181) (0.142) (0.138) (0.140)
[0.383] [0.384] [0.473] [0.483] [0.488] [0.192] [0.193] [0.179] [0.173] [0.172]

Robbery -0.477 -0.477 -0.592 -0.611 -0.613 -0.519 -0.518 -0.465 -0.495 -0.491
(0.179) (0.180) (0.187) (0.184) (0.185) (0.129) (0.129) (0.133) (0.127) (0.125)
[0.155] [0.155] [0.158] [0.164] [0.168] [0.124] [0.125] [0.128] [0.117] [0.118]

Assault -0.075 -0.080 -0.014 -0.031 -0.027 -0.140 -0.145 0.083 0.069 0.078
(0.165) (0.166) (0.161) (0.164) (0.165) (0.120) (0.120) (0.119) (0.120) (0.119)
[0.146] [0.147] [0.171] [0.178] [0.179] [0.104] [0.104] [0.117] [0.114] [0.115]

Property crimes -0.135 -0.130 -0.190 -0.198 -0.192 -0.182 -0.178 -0.119 -0.128 -0.115
(0.114) (0.113) (0.134) (0.130) (0.128) (0.077) (0.077) (0.087) (0.081) (0.078)
[0.073] [0.073] [0.112] [0.117] [0.116] [0.058] [0.058] [0.076] [0.076] [0.079]

Burglary -0.229 -0.224 -0.291 -0.320 -0.325 -0.161 -0.155 -0.054 -0.064 -0.058
(0.149) (0.149) (0.158) (0.156) (0.156) (0.119) (0.119) (0.135) (0.123) (0.115)
[0.090] [0.090] [0.121] [0.133] [0.132] [0.087] [0.087] [0.103] [0.101] [0.104]

Larceny 0.003 0.007 -0.049 -0.050 -0.043 -0.096 -0.092 -0.045 -0.049 -0.034
(0.118) (0.118) (0.145) (0.141) (0.138) (0.085) (0.085) (0.097) (0.091) (0.090)
[0.080] [0.080] [0.101] [0.101] [0.103] [0.060] [0.060] [0.085] [0.086] [0.089]

Motor vehicle -0.502 -0.499 -0.459 -0.457 -0.438 -0.517 -0.515 -0.478 -0.507 -0.491
(0.185) (0.185) (0.235) (0.233) (0.233) (0.132) (0.133) (0.165) (0.155) (0.148)
[0.222] [0.223] [0.297] [0.314] [0.309] [0.104] [0.105] [0.121] [0.128] [0.131]

sample 1960- 1960- 1970- 1970- 1970- 1960- 1960- 1970- 1970- 1970-
year effects yes yes yes yes yes yes yes yes yes yes
budget cycles no yes yes yes yes no yes yes yes yes
demographics no no no yes yes no no no yes yes
polynomials no no no no yes no no no no yes
and interactions

Note: Each column reports results of a 2SLS regression of the growth rate in each of nine crime rates on the first lag of the growth rate in

the number of per capita sworn police officers. Columns (1)-(5) report results for the models in which the LEOKA measure is employed as the

endogenous covariate and the ASG measure is employed as the instrumental variable while columns (6)-(10) report results for models in which the

ASG measure is employed as the endogenous covariate and the LEOKA measure is employed as the instrumental variable. For each set of models,

the first column reports regression results, conditional on the growth rate in the city’s population and a vector of year effects. The second column

adds a control variable for the city’s per capita expenditures exclusive of police expenditures. The third column is the same as column (2) with the

exception that estimation is done using the 1970-2010 sample. In the fourth column we add demographic controls which capture the proportion of a

city’s population that is comprised of each of twleve age-gender-race groups. Finally, in the fifth column, we add polynomial terms and selected

interactions of the demographic variables. All models are estimated using 2010 city population weights. Two sets of standard errors are reported

below the coefficient estimates. The top row reports Huber-Eicker-White standard errors that are robust to heteroskedasticity. The standard errors

reported in the second row are clustered at the city level.



Table 4A. First Stage Models
Within-State Differences

EC = LEOKA Measure EC = ASG Measure
INS = ASG Measure INS = LEOKA Measure

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

ASG measure 0.149 0.149 0.129 0.128 0.129
(0.013) (0.013) (0.011) (0.011) (0.011)

LEOKA measure 0.350 0.350 0.335 0.334 0.335
(0.029) (0.029) (0.031) (0.031) (0.031)

F-statistic 138.2 138.2 137.1 136.6 135.7 149.7 149.5 117.2 116.5 116.0
N 11,036 11,036 8,869 8,869 8,869 11,036 11,036 8,869 8,869 8,869

sample 1960- 1960- 1970- 1970- 1970- 1960- 1960- 1970- 1970- 1970-
state-by-year effects yes yes yes yes yes yes yes yes yes yes
budget cycles no yes yes yes yes no yes yes yes yes
demographics no no no yes yes no no no yes yes
polynomials no no no no yes no no no no yes
and interactions

Note: Each column reports results of a least squares regression of the growth rate in a given measurement of the number of per capita police officers on the

the growth rate in the other measurement. Columns (1)-(5) report results for the models in which the LEOKA measure is employed as the endogenous

covariate and the ASG measure is employed as the instrumental variable while columns (6)-(10) report results for models in which the ASG measure is

employed as the endogenous covariate and the LEOKA measure is employed as the instrumental variable. For each set of models, the first column reports

regression results, conditional on the growth rate in the city’s population and an unrestricted set of state-by-year effects. The second column adds a

control variable for the city’s per capita expenditures exclusive of police expenditures. The third column is the same as column (2) with the exception that

estimation is done using the 1970-2010 sample. In the fourth column we add demographic controls which capture the proportion of a city’s population that

is comprised of each of twleve age-gender-race groups. Finally, in the fifth column, we add polynomial terms and selected interactions of the demographic

variables. All models are estimated using 2010 city population weights. As clustered and robust standard errors are very similar across all models, we report

Huber-Eicker-White standard errors that are robust to heteroskedasticity. in parentheses below the coefficient estimates.



Table 4B. Least Squares Models of the Effect of Police on Crime
Within-State Differences

EC = LEOKA Measure EC = ASG Measure
INS = ASG Measure INS = LEOKA Measure

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Violent crimes -0.126 -0.126 -0.080 -0.077 -0.075 -0.063 -0.063 -0.034 -0.032 -0.029
(0.038) (0.038) (0.037) (0.037) (0.037) (0.023) (0.023) (0.021) (0.021) (0.021)

Murder -0.217 -0.218 -0.190 -0.183 -0.179 -0.130 -0.131 -0.119 -0.116 -0.118
(0.094) (0.094) (0.099) (0.099) (0.100) (0.059) (0.059) (0.062) (0.062) (0.062)

Rape -0.090 -0.089 0.052 0.054 0.054 -0.010 -0.009 0.030 0.033 0.035
(0.090) (0.090) (0.069) (0.069) (0.069) (0.054) (0.054) (0.049) (0.049) (0.049)

Robbery -0.214 -0.214 -0.217 -0.214 -0.212 -0.082 -0.082 -0.075 -0.074 -0.071
(0.046) (0.046) (0.047) (0.047) (0.047) (0.029) (0.029) (0.027) (0.027) (0.027)

Assault -0.053 -0.053 0.008 0.013 0.014 -0.014 -0.014 0.020 0.024 0.028
(0.049) (0.049) (0.047) (0.046) (0.046) (0.035) (0.035) (0.029) (0.029) (0.029)

Property crimes -0.052 -0.051 -0.036 -0.031 -0.030 -0.018 -0.018 -0.016 -0.013 -0.014
(0.025) (0.025) (0.029) (0.028) (0.028) (0.015) (0.015) (0.015) (0.016) (0.015)

Burglary -0.057 -0.055 -0.034 -0.032 -0.032 -0.042 -0.041 -0.032 -0.029 -0.028
(0.036) (0.036) (0.039) (0.039) (0.039) (0.021) (0.021) (0.021) (0.021) (0.021)

Larceny -0.023 -0.022 -0.013 -0.008 -0.006 -0.001 -0.001 -0.006 -0.004 -0.004
(0.027) (0.027) (0.031) (0.030) (0.030) (0.017) (0.017) (0.017) (0.017) (0.017)

Motor vehicle -0.130 -0.129 -0.105 -0.101 -0.098 -0.035 -0.035 -0.008 -0.004 -0.004
(0.042) (0.042) (0.048) (0.048) (0.048) (0.025) (0.025) (0.027) (0.027) (0.027)

sample 1960- 1960- 1970- 1970- 1970- 1960- 1960- 1970- 1970- 1970-
state-by-year effects yes yes yes yes yes yes yes yes yes yes
budget cycles no yes yes yes yes no yes yes yes yes
demographics no no no yes yes no no no yes yes
polynomials no no no no yes no no no no yes
and interactions

Note: Each column reports results of a least squares regression of thegrowth rate in each of nine crime rates on the first lag of the growth rate in the

number of per capita sworn police officers. Columns (1)-(5) report results for the models in which the LEOKA measure is employed as the endogenous

covariate and the ASG measure is employed as the instrumental variable while columns (6)-(10) report results for models in which the ASG measure is

employed as the endogenous covariate and the LEOKA measure is employed as the instrumental variable. For each set of models, the first column reports

regression results, conditional on the growth rate in the city’s population and a vector of year effects. The second column adds a control variable for

the city’s per capita expenditures exclusive of police expenditures. The third column is the same as column (2) with the exception that estimation

is done using the 1970-2010 sample. In the fourth column we add demographic controls which capture the proportion of a city’s population that is

comprised of each of twleve age-gender-race groups. Finally, in the fifth column, we add polynomial terms and selected interactions of the demographic

variables. All models are estimated using 2010 city population weights. As clustered and robust standard errors are very similar across all models, we

report Huber-Eicker-White standard errors that are robust to heteroskedasticity. in parentheses below the coefficient estimates.



Table 4C. 2SLS Models of the Effect of Police on Crime
Within-State Differences

EC = LEOKA Measure EC = ASG Measure
INS = ASG Measure INS = LEOKA Measure

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Violent crimes -0.357 -0.357 -0.251 -0.233 -0.210 -0.336 -0.335 -0.207 -0.205 -0.200
(0.144) (0.144) (0.153) (0.154) (0.154) (0.107) (0.107) (0.110) (0.111) (0.111)

Murder -0.826 -0.829 -0.903 -0.891 -0.902 -0.506 -0.508 -0.417 -0.401 -0.383
(0.390) (0.391) (0.464) (0.467) (0.467) (0.265) (0.265) (0.297) (0.298) (0.299)

Rape -0.060 -0.058 0.223 0.246 0.263 -0.241 -0.239 0.202 0.203 0.202
(0.343) (0.343) (0.352) (0.357) (0.357) (0.254) (0.254) (0.211) (0.213) (0.214)

Robbery -0.496 -0.494 -0.559 -0.553 -0.533 -0.588 -0.586 -0.637 -0.638 -0.633
(0.179) (0.179) (0.192) (0.194) (0.194) (0.127) (0.127) (0.132) (0.132) (0.133)

Assault -0.041 -0.040 0.150 0.180 0.210 -0.117 -0.116 0.082 0.087 0.092
(0.210) (0.210) (0.208) (0.210) (0.210) (0.137) (0.138) (0.141) (0.142) (0.142)

Property crimes -0.144 -0.141 -0.117 -0.095 -0.097 -0.143 -0.141 -0.099 -0.091 -0.088
(0.091) (0.090) (0.107) (0.108) (0.107) (0.068) (0.068) (0.083) (0.083) (0.083)

Burglary -0.292 -0.288 -0.244 -0.220 -0.217 -0.162 -0.159 -0.103 -0.097 -0.098
(0.130) (0.130) (0.149) (0.151) (0.152) (0.099) (0.099) (0.115) (0.116) (0.116)

Larceny -0.043 -0.040 -0.041 -0.024 -0.030 -0.056 -0.054 -0.023 -0.014 -0.007
(0.105) (0.104) (0.125) (0.126) (0.125) (0.075) (0.075) (0.092) (0.092) (0.092)

Motor vehicle -0.261 -0.258 -0.058 -0.028 -0.029 -0.367 -0.365 -0.315 -0.310 -0.303
(0.150) (0.150) (0.186) (0.187) (0.188) (0.114) (0.114) (0.141) (0.142) (0.142)

sample 1960- 1960- 1970- 1970- 1970- 1960- 1960- 1970- 1970- 1970-
state-by-year effects yes yes yes yes yes yes yes yes yes yes
budget cycles no yes yes no no no yes yes no no
demographics no no yes no yes no no yes no yes
polynomials no no no yes yes no no no yes yes
and interactions

Note: Each column reports results of a 2SLS regression of the growth rate in each of nine crime rates on the first lag of the growth rate in the number of

per capita sworn police officers. Columns (1)-(5) report results for the models in which the LEOKA measure is employed as the endogenous covariate and

the ASG measure is employed as the instrumental variable while columns (6)-(10) report results for models in which the ASG measure is employed as the

endogenous covariate and the LEOKA measure is employed as the instrumental variable. For each set of models, the first column reports regression

results, conditional on the growth rate in the city’s population and a vector of year effects. The second column adds a control variable for the city’s per

capita expenditures exclusive of police expenditures. The third column is the same as column (2) with the exception that estimation is done using the

1970-2010 sample. In the fourth column we add demographic controls which capture the proportion of a city’s population that is comprised of each of

twleve age-gender-race groups. Finally, in the fifth column, we add polynomial terms and selected interactions of the demographic variables. All models

are estimated using 2010 city population weights. As clustered and robust standard errors are very similar across all models, we report Huber-Eicker-White

standard errors that are robust to heteroskedasticity. in parentheses below the coefficient estimates.



Table 5A. Pooled Estimates of the Effect of Police on Crime
With Exogenous Population Growth

GMM and Empirical Likelihood Estimation

Violent Murder Rape Robbery Assault Property Burglary Larceny Motor
Crime Crime Vehicle

Theft

Panel A. Popoulation Measure = LEOKA

GMM(1) -0.346 -0.661 -0.154 -0.544 -0.080 -0.144 -0.224 -0.050 -0.306
(0.104) (0.253) (0.246) (0.125) (0.142) (0.067) (0.094) (0.073) (0.104)

GMM(2) -0.342 -0.591 -0.187 -0.565 -0.099 -0.143 -0.202 -0.052 -0.333
(0.097) (0.243) (0.232) (0.118) (0.128) (0.062) (0.090) (0.068) (0.100)

EL -0.342 -0.591 -0.188 -0.565 -0.099 -0.143 -0.200 -0.052 -0.330
(0.097) (0.241) (0.229) (0.118) (0.127) (0.062) (0.088) (0.068) (0.102)

Panel B. Population Measure = ASG

GMM(1) -0.271 -0.570 -0.091 -0.499 0.015 -0.092 -0.176 0.010 -0.270
(0.101) (0.243) (0.242) (0.124) (0.141) (0.063) (0.089) (0.070) (0.101)

GMM(2) -0.268 -0.511 -0.127 -0.522 -0.007 -0.093 -0.155 0.006 -0.287
(0.095) (0.235) (0.227) (0.106) (0.127) (0.060) (0.086) (0.066) (0.097)

EL -0.268 -0.509 -0.129 -0.522 -0.007 -0.093 -0.153 0.005 -0.283
(0.095) (0.234) (0.224) (0.117) (0.127) (0.060) (0.084) (0.067) (0.099)

Test statistic: 0.02 0.70 0.30 0.30 0.14 0.00 1.11 0.02 0.49
LEOKA population

Test statistic: 0.01 0.68 0.31 0.31 0.18 0.01 1.07 0.04 0.51
ASG population

N 10,074 10,389 10,179 10,254 10,237 10,239 10,257 10,248 10,251

Note: Each column reports results of a pooled IV regression of the growth rate in each of nine crime rates on the first lag of the growth rate in the

number of sworn police officers and the population size. Estimates are computed via one-step GMM (GMM1), two-step GMM (GMM2) and

empirical likelihood (EL) estimation. Panel A presents the pooled police elasticity from the forward and reflected IV regressions using the growth

rate in the LEOKA population measure as a control variable while Panel B presents police elasticites from pooled IV regressions using the growth

rate in the ASG population measure as a control variable. All models are estimated using 2010 city population weights. Huber-Eicker-White

standard errors are reported in parentheses below the coefficient estimates. Below the parameter estimates and the standard errors, we report the

value of two test statistics. The first test statistic corresponds to the pooling restriction that we estimate a common parameter on the growth rate

in police for the LEOKA population measure. The second test statistic corresponds to the same pooling restriction for the ASG population measure.

In both cases, the test statistic uses the result from the two-step GMM procedure and refers to a test of the equality of the individual parameter

estimates. The test statistic is distributed χ1 under the null hypothesis of classical measurement error. The criticial value of the test is 3.84.



Table 6. Further Tests of Classical Measurement Errors

Measurement Error Type

LEOKA-LEMAS LEOKA-ASG LEMAS-ASG
(1) (2) (3)

Panel A: Test of Assumption A1

Violent crimes -0.022 -0.004 0.014
(0.013) (0.006) (0.022)

Murder 0.003 -0.004 0.014
(0.003) (0.002) (0.005)

Rape 0.003 -0.002 0.025
(0.007) (0.003) (0.012)

Robbery 0.002 -0.002 0.040
(0.010) (0.005) (0.017)

Assault -0.016 0.004 -0.011
(0.010) (0.004) (0.016)

Property crimes 0.005 -0.011 0.038
(0.015) (0.011) (0.025)

Burglary 0.001 -0.016 0.023
(0.012) (0.008) (0.021)

Larceny -0.003 0.001 0.023
(0.014) (0.009) (0.023)

Motor vehicle 0.017 -0.007 0.029
theft (0.011) (0.007) (0.019)

F-statistic 1.05 1.34 1.73

Panel B: Test of Assumptions A2 and A3

ASG Measure -0.026
(0.023)

LEMAS Measure -0.050
(0.095)

LEOKA Measure -0.085
(0.061)

Note: Each column corresponds to a particular incarnation of measurement error. In column (1), the measurement

error is calculated as the difference between the LEOKA series and the LEMAS series. In column (2) the measurement

error is calculated as the difference between the LEOKA series and the ASG series. Finally, in column (3), the

measurement error is calculated as the difference between the LEMAS series and the ASG series. Due to the limitied

availability of LEMAS data, estimates in columns (1) and (3) are calculated using the following years of data: 1987,

1990, 1992, 1993, 1996, 1997, 1999, 2000, 2003, 2004, 2007 and 2008. Estimates in column (2) use the full

1960-2008 sample period. Panel A of the table reports the results of a series of regressions of growth rate in the

number of crimes on the measurement error, conditional on the growth rate in population. Panel B reports the

results of a series of regressions of a given proxy for the number of police on the measurement error, calculated as

the difference between the two remaining measures. Each of the models contains a full set of state by year fixed

effects. All models are estimated using 2010 city population weights. Huber-Eicker-White standard errors that are

robust to heteroskedasticity are reported in parentheses below the coefficient estimates.



Table 7. Pooled Estimates of the Effect of Police on Crime
With Endogenous Population Growth

GMM and Empirical Likelihood Estimation

Violent Murder Rape Robbery Assault Property Burglary Larceny Motor
Crime Crime Vehicle

Theft

Panel A. Instrumental Variable = ASG Population Measure

GMM(1) -0.363 -0.635 -0.196 -0.593 -0.069 -0.150 -0.247 -0.034 -0.345
(0.103) (0.259) (0.249) (0.130) (0.145) (0.066) (0.094) (0.075) (0.105)

GMM(2) -0.360 -0.576 -0.232 -0.613 -0.091 -0.150 -0.225 -0.038 -0.361
(0.099) (0.247) (0.239) (0.123) (0.133) (0.064) (0.092) (0.072) (0.102)

EL -0.360 -0.578 -0.233 -0.613 -0.093 -0.151 -0.224 -0.040 -0.359
(0.100) (0.245) (0.237) (0.124) (0.132) (0.064) (0.090) (0.071) (0.104)

Panel B. Instrumental Variable = LEOKA Population Measure

GMM(1) -0.358 -0.671 -0.167 -0.555 -0.094 -0.152 -0.233 -0.057 -0.326
(0.101) (0.250) (0.239) (0.127) (0.127) (0.065) (0.093) (0.073) (0.104)

GMM(2) -0.354 -0.596 -0.197 -0.574 -0.111 -0.151 -0.212 -0.059 -0.341
(0.098) (0.247) (0.230) (0.119) (0.120) (0.063) (0.091) (0.069) (0.101)

EL -0.354 -0.599 -0.286 -0.198 -0.574 -0.152 -0.210 -0.061 -0.338
(0.098) (0.245) (0.228) (0.120) (0.120) (0.063) (0.090) (0.069) (0.103)

Panel C. Pooled Estimates

GMM(1) -0.361 -0.654 -0.181 -0.572 -0.083 -0.151 -0.239 -0.047 -0.334
(0.101) (0.259) (0.242) (0.118) (0.140) (0.065) (0.086) (0.073) (0.104)

GMM(2) -0.356 -0.588 -0.182 -0.579 -0.109 -0.151 -0.218 -0.056 -0.347
(0.098) (0.245) (0.229) (0.111) (0.129) (0.063) (0.084) (0.069) (0.101)

EL -0.356 -0.591 -0.191 -0.582 -0.110 -0.151 -0.217 -0.057 -0.346
( . ) ( . ) ( . ) ( . ) ( . ) ( . ) ( . ) ( . ) ( . )

Test statistic: 0.14 1.00 0.37 2.48 0.61 0.10 1.94 1.68 1.59
pooling restriction (A=B)

N 10,074 10,389 10,179 10,254 10,237 10,239 10,257 10,248 10,251

Note: Each column reports results of a pooled IV regression of the growth rate in each of nine crime rates on the first lag of the growth rate in the number

of sworn police officers and the population size. As in table 5, we continue to instrument for one noisy measure of police with a second noisy measure.

However, while Table 5 treat both the LEOKA and the ASG population measures as exogenous, in this table, we assume that both the LEOKA and

ASG population measures are measured with error. Accordingly, both the police and population measures are instrumented using their counterparts in

the corresponding dataset. Estimates are computed via one-step GMM (GMM1), two-step GMM (GMM2) and empirical likelihood (EL) estimation.

Panel A presents the pooled police elasticity from the forward and reflected IV regressions, instrumenting the growth rate in the population measure in

the LEOKA series with the growth rate in the population measure in the ASG series. Panel B presents police elasticites from pooled IV regressions,

instrumenting the growth rate in the ASG population measure with the growth rate in the LEOKA population measure. In Panel C, we pool the police

elasticity across the exhaustive combination of choices of instruments and endogenous covariates. All models are estimated using 2010 city population

weights. Huber-Eicker-White standard errors are reported in parentheses below the coefficient estimates. Below the parameter estimates and the standard

errors, we report the value of three test statistics. The test statistic below Panel C tests the equality of the empirical likelihood parameters in Panels A and

B. This test statistic is distributed χ3 under the null hypothesis of classical measurement error. The critical value of this test is 9.35.



Table 7. Extant Estimates of the Effect of Police on Crime
Implied Elasticities

Article Country Years Cross-
Sectional
Units

Research Design Violent Crime Property Crime

Marvell and USA 1973-1992 56 cities lags as control variables -0.13* (murder) -0.15* (burglary)
Moody (1996) -0.22* (robbery) -0.30* (auto theft)

Levitt (1997) USA 1970-1992 59 cities mayoral elections -0.79 0.00
-3.03 (murder) -0.55 (burglary)
-1.29 (robbery) -0.44 (auto theft)

McCrary (2002) USA 1970-1992 59 cities mayoral elections -0.66 0.11
-2.69 (murder) -0.47 (burglary)
-0.98 (robbery) -0.77 (auto theft)

Levitt (2002) USA 1975-1995 122 cities number of firefighters -0.44* -0.50*
-0.91* (murder) -0.20 (burglary)
-0.45 (robbery) -1.70* (auto theft)

DiTella and Schargrodsky
(2004)

Argentina 4/1994
-12/1994

876 city blocks redeployment of police fol-
lowing a terrorist attack

n/a -0.33* (auto theft)

Klick and Tabarrok (2005) USA 3/12/2002 -
7/30/2003

7 districts high terrorism alert days 0.0 -0.30* (burglary)

-0.84* (auto theft)

Evans and Owens (2007) USA 1990-2001 2,074 cities COPS grants -0.99* -0.26
-0.84* (murder) -0.59* (burglary)
-1.34* (robbery) -0.85* (auto theft)

Our preferred USA 1960-2010 242 cities measurement errors -0.36* -0.15*
estimates -0.59* (murder) -0.22* (burglary)

-0.58* (robbery) -0.35* (auto theft)

Note: This table reports implied elasticities that arise from six recent articles each of which employs a novel identification strategy to estimate a causal effect of police on crime. Elasticities are

reported for the violent and property crime aggregates as well as for murder, robbery, burglary and auto theft. In place of the original elasticities reported in Levitt (1997), we have included

elasticity estimates from McCrary (2002) which correct for a coding error in the original paper. Our preferred estimates which account for the presence of measurement error in the Uniform

Crime Reports police series are shown below. Asterisks denote results that are significant, at a minimum, at the 10% level.


